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D 
CHAPTER ONE 

INTRODUCTION 

How best to detect known signals in noise is the object of 

much study and effort. Among the forms in which this problem occurs is 

that of deciding when a signal is present and from what direction it is 

arriving. In this study, we are concerned with the capabilities of 

sonar arrays to perform these functions. 

1.1     BACKGROUND OF THE PROBLEM 

The emphasis to be found here is upon analytical rigor, and 

so the class of array models treated is restricted. However, in the 

presentation of this work we have striven to facilitate extensions to 

related problems by being quite general in the earlier stages of the 

analysis. 

i Specifically, we shall derive the detection and bearing es'i- 

mation performance of a "multiplicative linear array" in comparison 

I ,„       with that of the "standard linear array." 

I **       1.1.1   LINEAR ARRAYS 

By the term "linear array" we refer to a set of 2M isotropic 

point receivers (hydrophones), arranged in a straight line with eHjal 

spacing d. In the literature, this configuration is often called a 

"broadside array," particularly in connection with transmitting systems. 

In receiving applications this configuration makes use of the greater 

coherence or correlation among the samples of the signal present at the 

hydrophones over those of the noise, when this condition exists. In 

effect, it is a method of simultaneously obtaining 2M samples or obser- 

vations of the signal plus noise process, a spatial analog to time 

sampling. /-/ 
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When these Samples are summed, the signal components tend to 

reinforce each other while the noise components, under certain conditions, 

tend to cancel or "average out." Also, when the signal is in the form 

of a sinusoidal plane wave, the individual signal components sum in such 

a way as to give the array a highly directive receiving pattern. 

In this plane wave case, which shall be our signal model 

throughout the study, the signal components at the hydrophones can be 

modeled as sk(t) = Ak(t)cos[wt-0-(k-l)ßsina], k = 1.2....2M, where a is the 

bearing of the (distant) source relative to the perpendicular of the 

array, 0 is an arbitrary initial phase, and ß = 2ird/x. The angular 

frequency is equal to 2TTC/A: where c and x are the velocity of sound 

and the wavelength in water, respectively. 

For a symmetrical gain array (A. = kyvi+l-k* ^  = 1 »2,.. .M), 

the sum of the signal components is 

2M M 

s(t) = ^ sR(t) = 2cos[wt-H-(2M-l)0sina]^ AM+1_kcos[-f(2k-1)ßsina] 

(1-1) 
k=l k=l 

and for a uniform gain array (A. = A, all k), the sum is 

• M 

s(t) = 2Acos[ü)t-04(2M-l)ßsina]^cos[t(2k-l)0s1na] 

k=l 

- 2MAD(4ßsina; 2M)cos[ü)t-H(2M-1)ßsinct], 

where D(x; N) = sinNx/Nsinx. 

(1-2) 

1-2 
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The sum of the noise components meanwhile, to illustrate with 

the simple case in which the components are independent, zero-mean, and 

2 2 
have equal variances o , would have a variance equal to 2Mo . Thus, in 

this ideal case, at zero bearing the uniform linear array sum would 

achieve a signal to noise ratio "gain" of 

(3.«>out/(SNR)jn='iig!i+ -^.= 2« (1-3) 

In general there exist proportional relationships between the 

number of elements and the array processing gain, and between the number 

of elements and the array directivity, considered separately. However, 

as will be discussed below, the relationship between directivity and 3NR 

gain is subject to other considerations. 

Schelkunoff [1], Dolph [27, and others, by considering the 

directivity function D(| Bsin a; N) as a polynomial in cos (Iß sin a), 

have shown that the directivity of a linear arroy whose elements are 

summed can be optimized as a function of the inter-element spacings 

and/or the individual weightings of the elements. In this study we 

shall restrict our attention to uniform gain linear arrays with equal 

spacings. 

1.1.2   SQUARE-LAW ARRAY PROCESSING 

In his textbook an acoustic signal processing, Horton [3] 

terms "standard detector" that configuration in which the sum of the 

hydrophone outputs is squared and averaged by means of a lowpass filter, 

usually with a variable time constant or bandwidth to accommodate 

tracking conditions. The output of the filter is then observed as the 

array is steered either physically or electronically. When the 

1-3 
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observation exceeds a certain threshold, the decision, "signal present," 

is made. When, as the steering takes place, the observation passes 

through a peak value, then the bearing of the signal source is taken 

to be the direction in which the array was steered at the time. A 

diagram representing the standard or square-law processor is shown in 

Figure 1-1. 

1.1.3   MULTIPLICATIVE ARRAY PROCESSING 

Berman and Clay [4] showed that methods of generating poly- 

nomials can be found which require fewer array elements than the uniform 

lineur array whose outputs are summed. One such method was shown to 

be taking time averages of products of various array element signals, 

rather than summing them, and manipulating the relative spacings among 

elements. Thus a 4-element TAP (time-averaged-product) array achieved 

the direction pattern of an 8-element additive array, and an 11-element 

TAP array matched the pattern of a 1024-element additive array. 

Tucker and Welsby [5-8] and Cath [9] considered systems in 

which the N elements of a uniform gain linear array are divided into two 

groups; the summed output of one group is multiplied by that of the other, 

and the product is smoothed by lowpass filtering—in Essence, the corre- 

lation of two arrays of smaller size. The beamwidth of this configuration, 

shown diagrammatically in Figure 1-2, was snown to be about one half that 

of the corresponding N-element standard array. Also, the relative 

magnitudes of the unwanted sidelobes are greatly reduced, the largest 

sidelobes being of negative polarity and thus removable by rectification. 

These advantages are illustrated in Figure 1-3 for a specific case. 
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While multiplier configurations can offer more efficient beam- 

forming, in the processing area they represent a departure from conven- 

tional detection toward correlation techniques. Thus there come into play 

additional tradeoffs, earlier stated by Faran and Hills [10], and subse- 

quently confirmed by these array designers in their calculations and 

experiments. 

It was found that any improvement in the directional pattern 

over the standard array by multiplicative processing is accompanied by 

degradation of the noise factor, or decreased SNR gain. Also, the multi- 

plication tends to mar the performance of discrimination between two 

targets or sources of unequal strength, while for equal strengths the 

performance was demonstrated to be greater. 

The degradation in array gain for TAP arrays relative to stan- 

dard was examined by Fakley [11] for narrowband noise and coherent 

narrowband signals. He shows that in a specific instance, for the same 

probability of correct detection, TAP operations require a higher input 

SNR. Fakley also shows the occurrence of the small signal suppression 

effect in the case of two sources, as well as the interesting case of a 

line source. In the latter he presents a calculation implying that the 

multiplicative process output will not track the angular energy distri- 

bution of the extended source, but rather peaks at its center bearing. 

Thus, among the experimenters and researchers in the field of 

sonar arrays, there exists a running debate on the relative merits and 

tradeoffs between standard and multiplicative array processing. 

1-8 
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1.2    DESCRIPTION OF THE PRESENT WORK 

This "debate" over the relative merits of standard and multipli- 

cative arrays has been handicapped by a significant consideration. Tucker [5] 

alluded to it as "... the difficult question of whether the better 

signal/noise performance ... is really indicative of a higher probability 

of detection." That is to say, the present methods of characterizing the 

array processing performance are inadequate. • Except in a few instances 

the performance criteria, because of the analytical difficulty of obtaining 

statistical detection parameters, have been SNR gains, calculated usually 

for rather specialized cases such as white noise. 

1.2.1   OBJECTIVES /ND PROCEDURES 

The object of this study is to make a positive contribution to 

the array processing debate by deriving exact probability density functions 

for the filter outputs of reasonably general narrowband models of both the 

standard array and the mult'solicative, with the major emphasis on the 

latter. In doing so, we have been able to develop expressions for detec- 

tion performance criteria in which appear all the various parameters which 

go into the tradeoffs. This material is presented in Chapters Two and 

Three. 

Also, we have utilized these probability distributions to 

calculate the theoretical best bearing estimation performance (minimum 

variance, error) attainable due to the information contained in the 

array filter output signal. Forms for maximum likelihood estimators 

are derived and evaluated with respect to the predicted minimum variance. 

This work is found in Chapters Four and Five. 
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In Chapter Six the study is concluded by summarizing the 

performance of the multiplicative array model, particularly in comparison 

wth the standard model. Suggestions also are given for extensions of 

the work. 

1.2.2   THE ARRAY CONFIGURATIONS TO BE STUDIED 

The standard array configuration, as shown in Figure 1-1, and 

the multiplicative array configuration mentioned by Welsby and Tucker, 

given in Figure 1-2, are the models to be studied—primarily the multi- 

plicative one. That is, the multiplicative array studied shall be 

considered to have a total of 2M isotropic point receivers or hydro- 

phones equally spaced d units along a straight line and each with unity 

gain. The outputs of these hydrophones, indexed sequentially from one 

end of the array to the other, are denoted by x.(t), k ~  1,2,...,2M. 

The standard array shall be considered to have N hydrophones. 

In the case of the standard array, the output of the processor 

is the filtered version of 

' N    12 

z(t) = £ *k(t)  = [NA(t)D(#sina; N) cos(wt-04(N-l)Bsina) + n(t)]2 

.k=l 
(1-4) 

For the multiplicative array, the output is, before filtering, 

z(t) = 
k=l 

2M 

I     \M 
Lk=M+l 

{MA(t)D(ißsina; M)cos[wt-0-r(M-l)ßsina] + n^t)} 

x'{MA(t)D(-Jßsina; M)cos[cot-M(3M-l)ßsina] + n,(t)}.      (1-5) 
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The form of the signal used here and throughout the study is that of a 

known narrowband source whose bandwidth is centered about u»/2n, and 

located at bearing  sufficiently far away that the array experiences 

it as a plane wave. This form is emphasized diagrammatically in 

Figures 1-1 and 1-2 by the presence of narrowband filters. For the sake 

of avoiding ambiguities, our attention will be mainly on bearings which 

fall within the major lobe of the array. That is, |Nß sin a|<ir for the 

■i 

standard array and  |Mß sin a|<ir for the multiplicative.    Any steering 

|| done by the array shall be assumed ideal, that is unity gain, distor- 
* 

r* tionless, time delays. 
y 
**        1.2.3   THE NOISE PROCESS MODEL 

Although the conditions do not always warrant it, for conveni- 

ence the noise process in the locality of the array shall be considered 

If       stationary Gaussian with zero mean. In Appendix A a discussion is 

p,       presented to motivate the selection of values for the elements of the I 
following covariance matrices used to characterize the noise components 

of the array summations: 

SQUARE-LAW ARRAY:  n(t) = nc(t) cos o>t + n,.(t) sin at 

CovCn^t,), n^t,)] 
o2 0 

0 a2 
(1-6) 

That is, adopting the usual quadrature expansion of narrowband Gaussian 

processes, the sine and cosine components of the noise are :nsidered 

independent at the same time instant. 

* 
We shall not consider steering and beamforming as such, but mention 

these operations only to indicate that the models we employ can 
accommodate them, and to support our practice of considering only 
relative bearings (i.e., relative to the stpering direction' within 
the major lobe of the array pattern. 
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MULTIPLICATIVE ARRAY: n.(t) = n. (t) cos ut + n. (t) sin ust  i = 1,2 

po^2 "^fz 

rol°2 pa,o, rz 

»Pz 

mrafz 

rafz   1 

po,c lw2 

(1-7) 

1 r« 
! 

That is, the noise correlation at the array sums is considered to be such 

that 

E(nkn2c) = E(nun2s) = pa^ 

E(nlcn2s) = -E(nlsn2c) = rolV 

(1-8) 
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CHAPTER TWO 

ARRAY PROBABILITY DENSITY FUNCTIONS 

The most basic representation of the multiplicative array 

model we are considering is that of the product of two nonzero-mean 

Gaussian random variables. This description encompasses a large number 

of cases which are of interest, which cases are often most readily 

approached individually because one or more simplifying assumptions are 

traditionally made. 

In this chapter we develop the probability density function 

for the generalized narrowband case of the multiplicative array configu- 

ration, showing also the related function for the square-law array. 

These, in turn, are specialized to the cases which are anticipated to 

be of most interest and, moreover, are relatively amenable to the 

analysis in the succeeding chapters. 

The situation in which the noise is symmetric across the 

array and has a narrowband spectrum which is even about the center 

frequency is selected as the "main case." The probability density 

functions for the multiplicative and square-law array filter outputs 

are applied to this case, yielding forms in which all the array para- 

meters appear explicitly. 

Computed results are shown for the probability density 

functions, displaying the effects of the various distribution para- 

meters. 
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The mean and variance of the filter output are calculated, and 

used to express the signal to noise ratio (SNR) at the output of the 

array processors. 

2.1     PROBABILITY DENSITY FUNCTION FOR THE GENERALIZED NARROWBAND 

MULTIPLICATIVE ARRAY PROCESSOR 

We now give our attention to a rather general case in which 

the multiplicative array summations of Figure 1-2 are modeled as two 

narrowband processes, u,(t) and u2(t), whose product z(t) is passed 

through a zonal lowpass filter to yield the output y(t), as illustrated 

in Figure 2-1. The processes u,(t) and u2(t) are said to consist of 

the super-position of known signals s,(t) and s2(t) and noise processes 

n,(t) and n2(t), respectively. At the same instant of time, n,(t) and 

n?(t) are assumed to be jointly normal random variables with variances 

2     2 . n.      »riH   a mrr^a + iri^   rnof firiont-   n      anH   7oyn   moanc      ac   in   ^ortinn 

1.2.3. 

The multiplier is assumed to be instantaneous, so that its 

output can be written 

z(t) = Ul{t) x u2(t) 

" Cs^t) + nr(t)] x [s2(t) + n?'t)] 

-T[u,Ct) +U2(t)]2 - \[ü}(t)   - U2(t)]2 

H [s3(t) + n3(t)J2 - [s4(t) + n4(t)P,       (2-1) 

where   s3>4(t) = J[s,(t) ± s2(t)] (2-la) 

and    n3,4^) = ^"i^ * n2^^- (2"lb) 

This arrangement may be recognized as the old "quarter-square multiplier" 

idea, used in analog computation. 
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moments: 

For the new variables we have defined, we have the followi ng 

E(n3) = 0 

E{n4) = 0 

E(np A 0| - \ (c| + 2paia2 + o$) 

E(n|) Ä a* ■ J (of - Zpa,a2 + of) 

r/    \ A r       1/2    2\ t(n-nj =- ,<{T-O4 = T (a, - o~). 

U-2a) 

3°4  4 vol (2-2b) 

! «-J 

i • * 

I 

i! 

Note that if o-i = a2> then R = 0; that is, n,  and n. are uncorrelated. 

Specialization to what we are calling the narrowband case 

consists in the conventional assumption that the following quadrature 

representations apply: 

s3(t) = S3(t) cos[ut-e3(tJ],  s4(t) = s4(t) cos[«ot-e4(t)] 

n3(t) = n3c(t) cos ut + n3s(t) sin ut = N3(t) cos[ut-*3(t)] 

n4(t) = n4c(t) cos o,t + n4s(t) sin «t = N4(t) cos[ut-*4(t)],   (2-3) 

where if s.(t) = S^t) cos[u)t-o.(t)] 

1 = 1,2 (2-3a) 
^(t) = N.(t) cosfet-^ft)] 

then 

S3,4 = T [si+s2±2sis2 c°s(ere2)] 

tane 
S, sino,±S2 sine? 

3,4  S 

N3,4 " I £N 

tan$ 
N 

cose,+C2 coso2 

+N|±2N1N2 cos(*r^2)] 

sin<(>1±N2 sin«j>2 

3,4 ~ N, cos<t>,±N2 cos^ 

2-4 

(2-3b) 
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With this narrowband representation, we have for the output 

of the multiplier, 

z = (s3 + n3)
2 - (s4 + n4)

2 

c \ tS3+2S3N3 cos(*3"e3) + N3 " S4 " 2S4N4 cos(*4-e4)-Nj] 

+ (terms with frequency 2o>).    (2-4) 

What is meant by "zonal lowpass filter" is that the filter output y is 

equal to the multiplier output z, less the terms of frequency 2u>. Thus 

if we define the sum and difference terms 

Z-j(t) cosfa>t-<^(t)] 

(2-4a) 

2,(0 = s3(t) + n3(t) =^[Ul(t) +u2(t)] 

= 2]c(t) cos .:,:• + zls(t) sin «t 

z2(t) = s4(t) + n4(t) = \ [Ul(t) - u2(t)] = Z2(t) cos[.«t-*2(t)] 

= z2c(t) cos »t + z2s(t) sin ut (2-4b) 

we find that 

y(t)-£[Z*(t) -Z*(t)] (2-5) 

where 

Zl 2 = \ tSl * S2 + Nl + N2 ±  2S1S2 C0^e2-91) 

+ 2S|N-| cosUj-e,) ± 2S1N2 cosOfrg-e,) 

± 2S2N1 cosU^Gg) + 2S2N2 cos(*2-e2) ± 2NjN2 cos^-^)] 

" S3,4 + N3,4 + 2S3,4N3,4 cos(*3,4-e3,4>      ' (2"5a) 
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and 

tarty 
Sj sine^ ± S? sine2 + N-j sin^-j + N„ sin$2 

1,2 ~ S, cose, ± S2 cose2 + N, cos<|>, ± N« cco«j>2 

S3,4 s1n03,4 * N3,4 sin*3.4 
S3,4 crse3,4 + N3,4 cos*3,4 

(2-5b) 

" 

! 

; i 
t i 

Our object is to find the probability density function of the filter 

output y(t) at a given instant in time. (From this point on, reference 

to time will be suppressed.) 

2.1.1    DISTRIBUTION OF THE SUM AND DIFFERENCE TERMS 

If, to use vector notation, we refer to the input noise com- 

ponents as x' = (ru , n, , ru . n«, ), wnere tne prime (') is used to 

indicate the transpose, then we may express the joint probability den- 

sity function of the input noise components as 

p0te> - 
47i2*/detK 

CAPL" 2  x. NX X.J, 

where K , the covariance matrix, is postulated to be 

Kx = Cov[nlc(t), nls(t), n2c(t), n&(t)] 

'■ E[x'xJ 

2 
Cl 0 p01°2 

* 

0 2 
°1 -rala2 . Pa]C2 

■ c ■ral°2 
2 

a2 0 

rala2 PCTjO/, 0 2 
a2 
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That is, the noise correlation at the inputs to the multiplier is con- 

sidered to be such that, for the same time instant, 

E(nlcn2c) = E(nlsn2sJ = p0la2 

E(nun2s) = -E(nlsn2c) = ra^. 

0 
; I 
( | 

We may consider the sum and difference noise components 

- = (n3c' n3s' n4c' n4s^ as a linear transofrmation n_ = Ax, where 

the matrix A is given by 

1/2 0 1/2 0 

0 1/2 0 1/2 

1/2 0 -1/2 0 

0 1/2 0 -1/2 

We may then write the probability density function of the variables n_ 

as 

Pi &) = 4^0 exp[- ^ü'^IL]. (2-6) 

where the new covariance matrix K is easily computed to be 

2-7 
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Kn = AK A = 

2 
°3 0 Ra3a4 

0 2 
°3 ~R OoO 

Ro3a4 'R'°3ff4 
2 

°4     • 

"R'°3°4 Ra3°4 0 

R'o3a4 

Ro3°4 

■s 

(2-7) 

and D = AJetK^ = a|oJ[l - R?- - (R')2]. (2-7a) 

The variances a2, and a?, and R are as given in (2-2), and R'cuo^ = - j ^,a„. 

It follows then that the quadrature expansions of the signal 

plus noise variables z, and z2 as defined above have the density function 

i .. 

.„-V 
P2(zlc'zls'22c'z2s) = 4^D expC" J ^'S)\  (z-'i)] (2-8) 

whe-e   (z-s_)' = (zlc-S3 cose3,zls-S3 sine3,z2c-$4 cose4,z2s-S4 sino4) (2-9) 

2.1.2   DISTRIBUTION OF THE FILTER OUTPUT, y 

Recall that the filter output is y =«- (Z,2 - Z|), The density 

function of Z, and Z? is 

-2IT J2.it 

P4(Z1,Z2) = J    df, J      d*2 p3(Z1,*1,Z2,*2) 

*£TI «til 

Z|Z2  J      d^   J      d<(.2 p2(Z1 cos^, Z1 sin^, Z2 cos<j>2,Z2 sint2) 

(2-10a) 
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4^1 / ' d*l / V d*2 expC' l(^),|(n1(^)]  (2"10b^ 

where   (Z - %)'  = (Zj cos^ - S3 ccse3, Zj sin<(»1 - S3 sine,, 

Z2 cos$2 - S4 cose4, Z2 s1n*2 - S4 sine4). (2-11) 

The quadratic form appearing in the integral's exponent reduces to 

Q = -1 2D [o4(Zl + SP + °3(Z2 + £4) " 2o3°4XS3S4 ««(e^-x) 

-2a3o4XZ-jZ2 cos(<j)-|-<j.2-x) 

-2a4VZ1 cos^-v) - 2a3WZ2 cosU2-w)]       (2-12) 

where X2 = R2 + (R')2, tanx = R'/R 

V2 = oJS2 + a2X2S2 - 2a3a4XS3S4 C0s(e3-64+x) 

W2 = o?,S2 + o|X2S2 - 2a3o4XS3S4 cos(e3-64+x) 

tanv 

tanw = 

0MS~  sine, - 03XS. sin(e.-x) 

o4S3 cose3 - o3XS4 cos(e4~x) 

a3S4 sino. - a4XS- sin(e3+x) 

o-jS^ coso. - o,XS3 cos(ö3+x) 
(2-13) 

xcosw I  €JM cosnw 
(l,n = 0 

, e = <      and 
n  (2,n > 0 

Using the relationship e       „    ,..,  , 
n=0 n n        n  (2,n > 0 

performing the integration with respect to <t>, and $2» in a manner quite 

similar to Middleton"- -* (chapter 9) we obtain 

2-9 
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>*<h'h> u-ir*»\$ HH + 4zl*^\ 

* I «J 
m=0 m m ffl -m (*) >. (^ cosm(v-w-x) (2-14) 

where we have used U2 = a|S| + a|S| - 2a3a4XS3S- cos(e4-e3-x), 

and I ( ) is the m:th order modified Bessel function of the first kind, m 

To obtain the density for y, we use the transformations 

(2-15) 

and 

Z, = /2y coshu 

72 = /27 sinhu 

Z1 = £2y sinhu 

| Z2 - tty cos hu 

for Z, > Z«t or y > 0 and u > 

for Z.J < Z«, or y < 0 and v > (2-16) 

Then we find that the density for y is given by the expression 

00 CD 

P6(y) =   f   du P5(y,u) = f   du p^vTy coshu , /2y sinhu ), y > 0 

■t 
= -^-exp 

du pAS-2y sinhu , •^ coshu ), y < 0. 

-(o'-aj)|y|-U2 2  2
M..I ,,2 

2D X c cos m(v-w-x) 
m=0 'm 

I x / du s inh2u e"a cosh2u I (b coshu )I(c sinhu )I (d sinh2u) m nr m' 

(2-17) 

2-10 
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with a = |y|(o^oJ)/2D,   d = a3o4X|y|/D, and 

(b,c) = (a4Vv^y/D,   ojlfiy/ti), y > 0 

■ (03W /1^/D,    a4V Ä2y*/D), y < 0. (2-18) 

il 

By writing x = 1 + cosh2u » ws may change the above integral to 

1 eaf dx e"a\[l^(*7)] Im [cjx*] lm [d^x?2)] 

lJx2k+m 
1 a   y     J   (b/2/2)2n+m   ¥} f dx 
2 n=0 k=0     nlT^r   lrr^^T A 

e"w(x+2)n+kV? 

x V$* 

"   n+'fm (b/2/2)2n+m ¥l_4,fl ,**♦«> 9n+k+m-r 
t.     * rf/n+fflVr*" k'Tk+mT1   v    r    y 

n=0 k=0   r=0     r-^+m>-      KUKi-inj.        r 
lea   I. .1 

-ax k4m+r 

dx e axx   Z     I m^l (2-19) 

Making use of Gradshteyn and Ryzhir13-' (formulas 6.643.4 and 9.220.2), 

we obtain for (2-19) the following expression: 

,, i    /lu\2n+m/l .\2k+m b  „ 
, C jn  1 ,      c2

x ^     r    n+^+m (2b)        (Id) ,n+k+m,2k-r ,. .   ., 
%)    2? exP(a+ 8T}J0 J0   J0   n!(n+m)!k!(k+m)!  (    r    ^ (k+r)' 

x Lk+r 8a' (2-20) 
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where the L?+ ( ) are the Laguerre polynomials of order k+r and parameter 

m. Substituting in (2-17) and for a, b, c, and d, and rearranging terms 

for clarity, we have finally 

"6<*> * sbexp ii5t2»aiyi+«2-92/!"H)]| 

...   n+k+m /fgo3o4X   \"/f2\n/'Hx2 \V  D    \ 

" Jo Jo Jo Jo pGHV W) W,1 VW 
,    /        \ (k+rj! /k+n+nu 

X M""*"^, (aiiW (2-21> 

with (f.g.aj) = 

VO^v,  o3w,  a^y,    >  >  v 

(03W, a4V, o|),    y < 0. (2-22) 

A recent paper by Andrews'- J gives an expression for the den- 

sity function in nearly the same situation, by means of the character- 

istic function method. Comparing the development here with that of 

Andrews, it appears that following the strenuous development associated 

with the computations of the characteristic function, one still needs 

to solve a convolution integral pirCh as our (2-19) above. The different 

final expression he obtains results simply from a different method of 
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attacking this type of integral. For the special cases, of course, the 

form of the expressions given here is identical to that of Andrews. 

Moreover, the computed results we show below match his wherever appli- 

cable. 

2.1.3   REDUCTION OF THE GENERAL EXPRESSION TO SPECIAL CASES 

For practical applications and for purposes of checking our 

results with those of previous authors, it is instructive to reduce the 

general expression of (2-21) under certain assumptions. 

2.1.3.1  Equal Noise Power with Even Spectrum 

An important case is that for which the noise inputs are of 

equal power and their spectra are even about the center frequency of the 

band. Under these assumptions, the cross-quadrature correlation 

coefficient r is zero'- ^ and a? = c2, = a2, implying that R = R' =0, 

Cf*    *"h3+'    + kr»    'rrsvm    V    -in    tf)_0~\\     ic     icwrs T\C\-GH r\^ r*r\    -Hin    inniit    CMD    fnv* 
<J V        kllUt        UI IV.        li^l   III      f\        III        yu       4-  I   f I J       <- V. J    W • *~> *- t     I  II  I  UM        VIIV. IHUUb      Ulll\       s   \J I 

channels 1 and 2 by 

S 2 

1»^ 

and 
s 2 

h2 =      »■ n2      2^ 

the general expression of (2-21) is reduced to the following form: 

For y > 0, 

2v 
^(y)=7exp   -?(T^-h3 - (V) h 2 ' "4! 

imm^mm (2-23a) 
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and for y < 0 

where 

P6(y)-Jrexpj^f^-- (^)h|-h|| 

r-0 

-   [KO+e)S^Y 

^r^«X[-V'i]«' 
h3 = Zukl (hl+n2+2hlh2 C0S 29) 

h* = .2^2 
4 = 2TW (hl+h2"2hlh2 cos 2e> 

(2-23c) 

(2-23d) 

and where 26 = 6,-6,, is the difference in phase between the narrowband 
!  L 

ri8i 
signals at the multiplier input [see Figure 2-1 and (2-3a)l. Muraka1 J 

presents results corresponding to a further specialization of this case 

to e = o and h| = h|. 

2.1.3.2  No Input Signals and Equal Noise Power 

If the correlator inputs are assumed to be only the noise of 

equal power, that is, h? = \\\ = 0 and a* = a2, = 0
2, the pdf (2-21) is 

further reduced to 

P6(y) - 

37
expt-^fkr]'y' ° 

,texp[^p-y].     y<0 

(2-24) 
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This result is identical to that of Lezirr J, who began analysis with 

these assumptions. 

2.1.4   THE PROBABILITY DENSITY FUNCTION FOR THE OUTPUT OF THE 

STANDARD OR SQUARE LAW ARRAY DETECTOR 

In the ensuing chapters we shall have use for the density 

function for the standard or square law array scheme, as we have 

defined it in Section 1.2.2. If the input to the squaring device is 

z(t) ■ s(t) + n(t) = Z(t) cos [u)t-*(t)], then the filter output is given 

by y = Z272. 

As above, we may write Z2 = z2 + z2 , where z and z are 

independent Gaussian variates with identical variance o2 and means 

Scosö and Ssine respectively if s(t) = S(t) cos [ut-e(t)]. 

It is well known that the sum of the squares of n independent, 

unit-variance Gaussian variates with means m, is a noncentril chi-square 

variate with n degrees of freedom and noncentrality parameter 

m? + m2, + ... + m2 [23]. Therefore, x = -4 is nor«central chi-square 

with two degrees of freedom and parameter S2/a2, and the probability 

density function of y is 

^ a 
h.. 2 si 
o a 

= ^ exp(-h2 - y I0(2hv/y77], y > 0,   (2-25) 

where h2 is the SNR at the input to the square law device. 
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2.1.5   COMPUTED RESULTS 

Judging the symmetric array, even spectrum case to be one of 

most general utility, we shall present computations of this probability 

density function (2-23), as well as the related density for the square 

law array (2-25), in order to show the effects of the parameters p, 

h, = h = h2, and e = (e,-e2)/2; o, quite obviously, is a scaling para- 

meter. In Appendix B the pdf (2-23) is shrwn to be equivalent to 

p6(y) 4- exp [-(h* ♦ hj)] I     I 0      *       q     n=0 m=0 

[f(l-p)h|f CH1+P)h|]n 

m! n! 

exp pn^r] Gü p^ü' 

vp [o2(l-p)j "n [a^l-p^J' 

y > o 

y < o, (2-25) 

m    ,  k 
(   ) T-r have the 

k=0  " , K- 
unusually useful computational property G" = G , + G " . The form (2-26) 

results from application of the characteristic function method to the 

special case we are now considering. 

For computation of (2-26), we have chosen a "nominal case" of 

specific values for the parameters: p=0, o=l, h=l, e=0. In Figures 2-2 

through 2-5, (2-26^ and (2-25) are plotted under varying parameters. It 
2 is seen in Figure 2-2, that h has the powerful effect of changing the 

pointed curve of the no signal case into curves which begin to approach 

the familiar Guassian. 
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FIGURE 2-4    MULTIPLICATIVE CONFIGURATION PDF; 
PHASE VARIED 
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2.2    APPLICATION TO THE ARRAY MODELS 

All subsequent analysis shall be based on the application of 

the filter output probability density functions for the "main" case in 

which the array and the array noise input processes are symmetric, and 

the noise spectrum is even about the narrowband center frequency. This 

application shall consist, in this chapter, in showing the explicit 

probability density functions (that is, containing all the pertinent 

parameters) for either type of array, including computed results. 

In order to be able to show the effects of inter-element 

correlation on the probability density, we have taken pains in Appendix A, 

Section 3, to obtain closed form representations for the variances and 

the correlation coefficient at the array sums. The resulting complexity 

in expression is considerable, but we shall be quick to illustrate with 

Sr»<"»/- *i "» 1      r*snr\t~ r<r*     4-U -> 4-     4-W «     4-*«-.^**     r*£     4-U ** • • « U 4-     «I £      »«f      l/icf" 
pUU IUI      CUOC3 »      OU      UIIUÜ      LUC      II   Ulli     Ul        VIIUU^IIU      13      IIUl      lU^L. 

2.2.1   THE EXPLICIT PROBABILITV DENSITY FUNCTION FOR THE 

MULTIPLICATIVE ARRAY MODEL 

For the multiplicative array model, from (1-5) it is evident 

that we have for the array sum signal parameters, 

S1 = S2 = MAD(e/M; M), Ho] - 82) = -9 = IMßSina, (2-27) 

where A is the signal input amplitude, the total number of array ele- 
,  .  sinNX  0  27id 

ments is 2M, a is the relative bearing, D(x;n) = j^JTnx > ß = ~T~- 

Referring now to the two models for inter-element correlation 

in Appendix A, we have for the multiplicative array, 

2-21 
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o2 * Ms2 + 2(M-l)as2 

p a M + 2{M-1)a 

ADJACENT CORRELATION 

a = correlation coefficient (2-28) 

] 

H2H2D2(e/M; M) 
M + 2(M-lja 

J
2 = Ms2 + 2^(M-l)s2^^l) 

.      Me"b(1-e'b)2 

IT+2(M-l)(b+e" -1) 

h2 s     b2MH2D2(9/M; M) 

" b2+2(M-l)(b+e~b-l) 

EXPONENTIALLY DECREASING 

CORRELATION 

Correlation between 

i       J    -blm-nj elements m and n « e '  ' 

(2-29) 

whpre  ^^ =   noi<:p  varianrp  at   hvrfrnnhnnpc 

. A 
H2 = SNR at hydrophones. 

Tn order to keep the notation under control, let us define for either 

model of correlation the two parameters 

B = 02/Ms2 

C = pB. (2-30) 

Thu3 we may conveniently resort to the white noise case by setting 

B = 1 and C = 0. With these definitions, we may substitute into (2-23) 

to obtain the explicit probability density function for the multiplica- 

tive array filter output: 

2-22 
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: 

.. 

5  I 

P6(y) - P6(y; o, ß, M, s, H, a or b) 

1 exp -2y   2MH2D2 B-Ccos29  MH2D2sin26 B+cl 
"  "    n   n   "r'~    " B-Cj BMsfc  _Ms2(B+C)   B   B2-C2 

B 

i^^)\(^^^^n} * > o 
(2-31) 

BMs' 
exp 2y 2MH2D2 B-Ccos2e + MH

2D2cos26 B-C 

Ms'(B-C) 6        B2-C2 B B+C 

v V /MsHDsine B+c\rT /4HDsin9>^y\   /-MH2D2cos26 B-c\    u , n 

(2-32) 

To illustrate the use of this expression, we shall give four 

examples. To obtain the white noise case, we use B = 1 and C = 0, with 

the result 

p6^ = p6^y; a> ß' M' s' H^ 

= -\ exp (-2y/Ms2 - 2MH2D2 + MH2D2sin28) 
Ms* 

00 

x £ /^^\l^^{^^in29)t  y > 0 (2_33) 

-U exp(2y/Ms2 - 2MH2D2 + MH2D2cos26) 
Ms* 

K ^/MD^YI/4HDsin9/^Lr(,MH2D2cos2eK y < Q>  (W4) 
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For a second example, let us consider a 10-element multipli- 

cative array with adjacent correlation. Then M = 5, and for y > 0, 

P6(y; a, 8, 5, s, H, a) 

1 

5s2(l+1.6a) 
exp ■*L 10H2D2 l+1.6a-acos29 

5s2(l+2.6a)  1+1.6a l+3.2a+1.56a2 

exp 5H
2D2sin6 1+2.6a 
1+1.6a  l+.6a 

r=0 

2.5sHDcos9 l+.6a 

/y 
1+1 

6a \ 
.6a/ 

x j ^HDcosevY^ /-5H2D2sin29 1+2.6a\ 
'1.6a l+.6a/ lr\s(l+1.6a Ihn (2-35) 

For our third example, let us find the density for an array 

whose noise environment has been determined to be exponentially decreas- 

ing, in the mariner in which we have defined this concept, and for which 

experiments yield the information b = 1. Thus B = .74 and C = .15. 

We have for this density, if y > 0, 

P6(y; a, ß, M, s, H, b=l) 

1 
Ms^(.26+.74M) 

exp ■h. 2MH2D2 .26+.74M-.15cos20 

Ms2(.41+.74M)  .26+.74M .045+.34M+.55M2 

exp MH
2D2sin20 .41+.74M 

■26+.74M    .11+.74M 
V /MsHDcos9_ .11 + .74MV 
L\ 0/- .26+.74M/ 
r=0     2/y 

I  f4HDcose/y    1    /-MH2D2sin29 ,41+.74M\ 
rlsTTl + .74M7JLrl    .26+.74M    .11+.74M/' (2-36) 
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As a fourth example, let us find what is called the "boresight" 

case, where a = 0. Then 8 = 0 and D = 1, so that 

P6(y; 0, ß, M, s, H, a or b) 

- i* MB^^H2)] |(g ¥-)\[i»»> ° <»» 

BMs' 
exp 2y     Mjr/9     I^CY 

,D .* " B+C\   "   B I Ms^(B-C) 
. y < 0. (2-38) 

2.2.2   THE EXPLICIT PROBABILITY DENSITY FUNCTION FOR THE STANDARD 

ARRAY MODEL 

For the standard array model, from (1-4) we have for the array 

sum amplitude, S = NAD(e'/N; N), where we have used e' = ?N8sina,N = total 

number of hydrophones. As in (2-28, 2-29, 2-30) we may write for the 

array sum, 

o2 = Ns2 + 2(N-l)as2 

.2  N2H2D2(e'/N; N) 
n " N + 2(N-l)a 

ADJACENT CORRELATION (2-39) 

o2 = Ns2 + 2N(N-l)s
2(^i) 

v b^ ' 

n
2 = b2NH2D2(9'/N; N) 

b2+2(N-l)(b+e'b-l) 
2  2 and we may also define B' = a /Ns . 

EXPONENTIALLY DECREASING 

CORRELATION 
(2-40) 

(2-41) 

2-25 

MiiMri ■ --. ■ majBBJi 



I 

. .1 

.! 

I ■ i 

The white noise case corresponds to B' =1. 

With these definitions, we substitute in (2-25) to rind the 

explicit probability density function for the standard array filter 

output: 

psq(y) = Psq(y; ex, ß, N, S, H, a or bj 

 2 exp 
B'Ns* 

—=Vy + N2H2D2s2) 
B'Ns^ ^(fr^)' y > °- (2"42) 

2.2.3   COMPUTED RESULTS 

Results for the array probability densities (2-31, 2-32) and 

(2-42) are presented in Figures 2-6 through 2-14. 

For the multiplicative array model, the nominal case of 10 

elements (M = 5), white noise (a = 0), unit ncise variance (s2 = 1), 

zero bearing (a = 0), half-wavelength array spacing (3 = IT), and zero 

dB input SNR (H2 =1) was chosen. In Figure 2-G, H2 is varied, yield- 

ing curves yery  similar to those of Figure 2-2, although we are now 

dealing with an order of magnitude higher values of the filter output, 

since each array sum is contributed to by five array elements, and the 

normalization we have chosen is at the elements. 

The number of array elements (2M) is varied in Figure 2-7, 

showing especially well the effect of this parameter on the mean and 

variance. It is evident that the number of elements does not signifi- 

cantly change the shape of the distribution, as does the SNR. However, 

for lower input SNR, as in Figure 2-8, a more dramatic effect can be 

observed. 
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FIGURE 2-6 MULTIPLICATIVE ARRAY PDF; 
INPUT SNR VARIED 
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FIGURE 2-8    MULTIPLICATIVE ARRAY PDF; 
NUMBER OF ELEMENTS VARIED (LOW SNR) 
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FIGURE 2-9    MULTIPLICATIVE ARRAY PDF; 
ADJACENT-ELEMENT CORRELATION VARIED 
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FIGURE 2-10 MULTIPLICATIVE ARRAY PDF; BEARING VARIED 
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FIGURE 2-12   STANDARD ARRAY PDF;  INPUT SNR VARIED 
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ii The effect of adjacent inter-element correlation is displayed 

in Figure 2-9. It is seen that correlation among the array elements, 

and therefore between the array sums, increases the variance of the 

filter output and decreases the value of y at which the peak of the 

distribution occurs. 

Figure 2-10 demonstrates a phenomenon of great interest to 

us in Chapter 4. The bearing is seen to act as a location parameter 

for the distribution of the filter output. The manner in which the 

bearing slightly affects the SNR, through the directivity function, can 

also be observed in this figure. In Figure 2-11 it is shown that for 

low SNR, bearing ceases to be a location parameter in the usual sens°, 

since the peak of the distribution remains at y = 0. 

In Figures 2-12 through 2-14, the distribution of the filter 

output of the square law or standard array model is seen to behave with 

parameter variation in much the same way as that of the multiplicative. 

Here we have used H2 = 1, s2 = 1, ß = », a = o, a. = 0, and N = 10 as 

the nominal case. In Figure 2-10, the SNR is varied, while in Figure 2-13 

and 2-14 ;he array inter-element correlation and the bearing are varied, 

respectively. It is very noticeable that, although we have used the same 

number of elements as in the multiplicative case, the magnitude of the 

filter output values is much greater. In fact, there is a factor of 

four involved, as can be understood by comparing (1-4) and (1-5) for 

N = 2M. 
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2.3 MEAN, VARIANCE AND SNR AT THE FILTER OUTPUT 

2.3.1 MULTIPLICATIVE ARRAY 

For the narrowband multiplicative configuration, we have from 

Section 2.1, 

y = (Sj + n1)(s2 + n2) - (terms of frequency 2u) 

aip1(n2ccose1+n2ssin91) -r S^cos^-e^ + S2(nlccos82+nlssin02) 

+ nlcn2c + nlsn2s] <2-43> 

so that E(y) = pa^ + ^$200526 = o^a^p + h,h2cos2e) (2-44) 

and        Var(y) = ja2a2(l+p2-r2) + ^a2S1S2(pcos26+rsin2e) + i(a2S2+a2S2) 

0   0 0 0 0 0 
= ia,o2[l + p - r + 2h,ti2(pcos2ö+rsin2ö) + h, + h?] (2-4b) 

where 9 = {  (e,-e?) and we have used (1-7) and the well known moment 

properties of zero-mean Gaussian random variables ([16], Section 7.3.2): 

E(uvwx) = E(uv)E(wx) + E(uw)E(vx) + E(ux)E(vw) (2-46) 

E(uvw) = 0 (2-47) 

with (u, v, w, x) being any combination of (n, , n, , n^ , n2 ). 
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For our main case of the symmetric array, even noise spectrum, 

.1 

a* 

.. 

we have a, = o2 = o, S, = S2 = ah »2, and r = 0. Therefore, for the main 

case, 

E(y) = o2(p + h2cos 29) (2-48) 

Var(y) = £ o4[l + p2 + 2h2(l + p cos 2e)]. (2-49) 

Further, using the notation of (2-29), 2-30, 2-31), we obtain expli- 

citly 

E(y) = Ms2[C + MH2D2(0/M; M) cos 2e] (2-50) 

Var(y) = i M2s4[B2 + C2 + MH2D2(e/M)(2B + C cos 2s)].      (2-51) 

We may use these expressions to show the SNR at the filter 

output, using the conventions of Middleton'-  , Section 5.3: 

SNR = lE(y)-E(ylH=o)T 
0     Var(y) 

2 4 4  2 2tnrD cos^e 
B2 + C2 + MH2D2(2B + Ccos2e) 

(2-52) 

2.3.2   SQUARE-LAW ARRAY 

For the narrowband standard or square law array configuration, 

the filter output is a noncentral chi-square random variable, as noted 

in Section 2.1.4. Since the mean and variance of x2(x; 2, a2) are given 

([23]) by E(x) = 2 + a2, Var(y) = 4 + 4a , we have 

E(y) = a2(l + h2) (2-53) 

Var(y) = ö4(I + 2h2). (2_54) 

Using the notation of (2-39, 2-40, 2-41), we write explicitly, 

E(y) = Ns2[B' + NH2D2(o'/N; N)] (2-55) 

Var(y) = B'N2s4[B' + 2NH2D?-(o7N; N)]. (2-56) 
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The filter output SNR then becomes 

SNP _ [E(y) - E(y H=0)12 =    N2H4D4 

0     Var(il        B'(B'+2NH2D2 " (2"57> 

2.3.3   COMPARISONS 

It is interesting to compare the moments and SNRs which we 

have just shown. We shall do so for the white noise case in which 

also 6=0 (boresight case). Denoting means by E and variances by V, 

we have 
• " i 

.1 Ecn = Ns
2(l + NH2)     Em = M

2s2H2 sq m 

- V  = N234(l + 2NH2)   Vm = |M2s4(l + 2MH2) (2-58) 

N2H4        r,m   2M2H4 SNR„ =  " " „-      SNR„ = 
Sq  1 + 2NH2 m  1 + 2MH2 

The comparisons we wish to show are tabulated as Figure 2-15, in which 

>.in   I«-...«   X--...«   - •; 4-..-. 4--' ~~~    ..„„.,.„.. „„4.-•„ ~   v.;*.!* 1    i _. .   ,'„. 4.   r»in   r     l-\    4-u. nc   ncivc    IUUI     oii.uuk.iuio   i cpi cjciinny   iityii   anu    IUIV    input   juf\    IUI     \a /    tnc 

standard and multiplicative arrays having the same total number of 

elements, that is, N = 2M; (b) the two arrays having roughly the same 

beamwidth, represented by N = 4M. It is seen, for example, that the 

multiplicative array SNR is less than or equal to that for the standard 

array in all these cases. 

****** 

Additional references. The method we have used to obtain the filter 

output probability density functions is by no means the only one. 

Perhaps the most thorough method is that which takes into account the 
i 

filter transfer function of a realizable filter, and treats the filter 
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FIGURE 2-15 COMPARISON OF FILTER OUTPUT MOMENTS, SNR 

2-40 

Hi IMMMiMHuiu» •MMMHMilMNfiMMHtttM 



u 

11 

input as a time series. In the literature, this approach is often 

attributed to Kac and Siegert*- ■*, and usually is found applied to the 

square law detector [41-43]. An exception is the work of Lampard'- ■", 

who studies a multiplier/filter configuration. The curves in Marcunr * 

and in Emerson"- *  are especially comparable to those we have generated. 

Others not mentioned in the text who have used the same method 

as we to analyze the multiplier/filter, though less generally, are listed 

for reference [44-46]. A thorough treatment of the output SNR of such 

T471 
systems is that of GreenL J. In these works, \iery  similar probability 

density curves were obtained from sometimes very dissimilar expressions. 

For those who wish to pursue the mathematical statistics 

aspect of this problem, we provide a listing [48-52] of what we con- 

sider profitable reading in this area. 
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CHAPTER THREE 

DETECTION PERFORMANCE 

1 Having now the probability density functions for the array 

processor filter outputs, we are in a position to evaluate what 

Tucker1- J described as "... the difficult question of whether the 

better signal/noise performance [of one detector over another] is really 

indicative of a higher probability of detection." That is, we are able 

to calculate directly the probabilities of detection for the standard 

and multiplicative array models, as functions of the SNR and of corres- 

ponding probabilities of false alarm. 

3.1     DETECTION CRITERIA 

The above assertion relies on various definitions and assump- 

tions. Our analysis assumes the usual Neyman-Pearson arrangement*-  , 

shown in Figure 3-1, in which the value of the filter output is subjected 

to a "test." If the filter output (y) is greater than a threshold (Tj, 

then the decision, "signal present," is made. If y < T, the decision 

"no signal" is made. 

Since due to the noise, y is a random variable, this decision 

strategy is susceptible to two kinds of error. One, called "false 

alarm," occurs when a threshold-crossing due to noise only causes a 

spurious "signal present" decision. The other error lies in missing a 

weak signal because a threshold-crossing did not take place. 

The problem in this type of strategy is to choose the threshold 

such that, an acceptable probability of error is maintained. Often there 

is a high cost attached to a false alarm (for example, an expensive 

weapon fired), so the usual practice is to consider the threshold as 

T '  T(PFA^ wnere PFA 1S the probabi1ity of false alarm. 
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I    1 

Various types of detection systems then are evaluated in terms 

of the probability of detection (PQ) achieved for a given threshold, 

as a function of the SNR when a signal is present. Therefore the trade- 

off between PpA and P~ is of great interest, and it is standard practice 

to exhibit this tradeoff in the form of "receiver operating character- 

istics," in which Pß is plotted as a function of Pr« and the input SNR. 

3.2     CALCULATION OF FALSE ALARM PROBABILITY 

Since a false alarm occurs when the filter output y exceeds 

th° detection threshold T when there is no signal present, the proc?hility 

of false alarm is given by 

I \ 

FA 

00 

■fp(y\H=0)dy. (3-1) 

3.2.1 MULTIPLICATIVE MODEL 

Using (2-26) for p,.(ylH=0), we have for the false alarm 

probability for the multiplicative array model, 

•Jy_ 
(T(l+p). 

(T>0) 

= ±(1+P) fax e" 

a2(l+p) 

PFA = iO+p) exp 
-2T 

<r(l+p) 
(3-2) 

or, to use the notation of Section 2.2.1, 

PFA = Kl+C/B) exp 
-2T 

Ms^(B+C) 
(3-3) 
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3.2.2   SQUARE LAW MODEL 

Using (2-26) for PSQ(y). we obtain for the false alarm 

probability for the square law or standard array model, 

PM = / <ly V exp(-y/a2)   (x>0) 
J       a FA J"f 
T 

= exp(-T/o2) (3-4) 

or, in terms of Section 2.2.2, 

PFA = exp(-r/B'Ns
2). (3-5) 

3.2.3   COMPUTED RESULTS 

Figure 3-2 illustrates the simple manner in which the false 

alarm probability varies with the threshold. It is clear that the 

standard array model requires a higher detection threshold than the 

multiplicative with the same number of elements to achieve a similar 

false alarm rate. However, this statement has to be qualified further 

for general application, since the models do not take into account the 

attenuations and gains of actual systems, and therefore the magnitudes 

of the filter outputs may not correspond in the same way as they do 

here. 

Nevertheless, the mean and variance of the filter output due 

to noise alone tends to be smaller in the multiplicative configuration, 

allowing a relatively lower threshold (compare equations (2-51) and 

(2-56), (2-52) and (2-57) for N = 2M). 
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3.3 CALCULATION OF DETECTION PROBABILITY 

Detection of a sigral which is present occurs when the 

filter output exceeds the detection threshold. Therefore, the proba- 

bility of detection is given by 

=/dy p(y| H>0). (3-6) 

3.3.1    MULTIPLICATIVE MODEL 

Using (2-26) for pß(y), for the multiplicative array model 

we have for the probability of detection, 

i -     -   irHl-p)n?f [i(l+p)h|]n 

P6(y) - i exp [-(hä * h|)]   I     I   - -JJJ ^1- 
n-0 m=u 

00 

dy expj-2 ■1L 
(a (1 + p) 

_^_ 

a (1-p ) 
.    (T>0).    (3-7) 

To obtain the result, we take the integral  in (3-7) separately: 

00 ID 00 

/dy e-bV(cy) =    £  (m+^k)   /dy e-b*(cy;k/k! 
T k=0 T 

m .» 

2(tU(S/* 
k=0 bt 

-x k 
e   x 

m 

k=0 K,D 

(3-8) 
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where r(n,x) is the incomplete Gamma function. Using [13], formula 

8.352.2, we continue: 

/* <-by<I<<» ■£ 2 cr)(f) 2 %- 
k=0 

m 

r=0 

_.e-bT 
I  rn"k)(&)k •„<*> 0-9) 

where we have taken b = 2/o2(l + p) and c = 4/a2(l-p2). 

Substituting (3-9) in (3-7), we find for h,=h2=h, 

PD = Hl+P) exp 
_2h2/T^p20> 

CO 00 

v2m 2n,,    jn-n 
V   V     (hcose)      (hsine)   71-p\ 
Z   Z m! n!      ll+p/ 
m=0 n=0 

x   exp 

m 
-2T     rs?  /m+n-k\/ 2   V 

C2(HP)    k40
(    "   Al"P'   " 

2T 

<r(i+p) 
(3-10) 

or, in the notation of Section 2.2.1, 

B+C 
PD = W eXP 

■2x 2MH2D2 B-CCOS29 

Ms  (B+C) 
B   ~   B2^? 

V   V   /MH2D2\m+n(cose)2m(sin9)2n 

Z   Z   V    B   / m! n! 
m=0 n=0 

färicDffl* 
k=0 

2x 

Ms  (B+C) 
(3-11) 
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3.3.2 SQUARE LAW MODEL 

i ! 

Using (2-25) for Psa(y). the probability of detection for 

the square law or standard array model becomes 

PD = fäy ±j exp(-h2-y/aZ) I0(2h$/a) 

T 
00 

= fx exp(-h24x2) I0(^hx) dx (3-12) 

SEtla 

or    PD = Q(v^h, fiF/o), (3-13) 

where Q is Marcum's Q-function. In terms of Section 2.2.2, the proba- 

bility of detection is 

PD = (KHDv^W , N/WB'NS2). (3-14) 

3.3.3   COMPUTED RESULTS 

The behavior of the probability of detection at the filter 

outputs as a function of threshold and array input SNR is shown in 

Figure 3-3 for N = 2M = 4 and in Figure 3-4 for N = 2M = 10. 

It is seen that in general, the standard array model's 

detection probability is higher than that of the multiplicative for 

the same threshold, subject to the qualifications cited in Section 3.2.3. 

This is due to the fact that, for the same number of array elements, the 

bulk of the standard probability density is concentrated about i  higher 

mean value than for the multiplicative case. Another factor is that the 

detection probability for the square-law or standard processor is 

always unity for zero threshold. 
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FIGURE 3-3 DETECTION PROBABILITY vs THRESHOLD 
(4-ELEMENT ARRAYS) 
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FIGURE 3-4    DETECTION PROBABILITY vs THRESHOLD 
(10-ELEMENT ARRAYS) 
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3.4 SYSTEM COMPARISON: RECEIVER OPERATING CHARACTERISTICS 

In the previous sections we have exan ined separately the 

probabilities of false alarm and of detection for the two array models 

we are considering. It was seen that the multiplicative model has a 

more desirable false alarm rate for the s wie value of detection threshold, 

while the square-law or standard model yields a higher probability of 

detection. However, this apparent tradeoff is blurred by the unsuit- 

ability of the detection threshold as a basis for comparison. 

A more informative method of comparing such systems is the 

construction of "receiver operating characteristics," which eliminates 

the threshold altogether by converting the parametric relations 

PFA = WT) 
PD = PD(T,SNR) 

(3-15) 

into the relationship Pß = PQ(PFA,SNR). (3-16) 

Because with the receiver operating characteristics (ROC) 

representation two different threshold detectors are more directly 

comparable, a performance index such as "minimum detectable signal" can 

be used to pronounce one the better detector with some confidence in 

the generality of this kind of statement. (The minimum detectable sig- 

nal is defined as the SWR required to insure a given probability of 

detection for a certain false alarm rate, also given.) Helstrom'- -* 

cites additional uses of the ROC; for example, determination of para- 

meters for Bayes and minimax criteria detection schemes. 

The ROC curves for our two models, for the white noise, bore- 

sight case, are given in Figure 3-5 for N = ?M = 4 and in Figure 3-6 

for N = 2M = 10. The fact that the standard array  processor ROC curves 
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RECEIVER OPERATING CHARACTERISTICS 

Number of Elements=4 

Half-Wavelength Spacing (ß=Ti) 
2 
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are consistently above those of the multiplicative indicates that the 

standard array model is a better detector in this case. They are 

quite close together, however, and the minimum signals for the two 

configurations would appear not to differ by more than 1 dB. 

The more usual presentation of detection probability as a 

function of SNR is given in Figure 3-7 for four-element arrays and in 

Figure 3-8 for ten-element arrays, for various values of false alarm 

probability. These curves, of course, contain the same information 

as Figures 3-5 and 3-6, and are given here for the convenience of 

those who are more familiar with this presentation. 

Arndt*- "* compared SNR and angular resolution (beamwidth) 

properties of various array configuration, including linear arrays of 

the type we are studying. Assuming that probability of detection is 

proportional to output SNR, he is willing to declare that additive 

(conventional or "standard") processing is the better detection strat- 

egy, although for the price of 3 dB in SNR, split-beam multiplicative 

processing obtains superior bearing "estimation" (tracking) capability. 

Arndt concludes that this "price" is too high where detection is para- 

mount, although he does not consider the false alarm rates of the two 

configurations. 

Our results, while not directly comparable, suggest that 

more thorough examination may reveal that the cost in detection proba- 

bility (vs. false alarm rate) is less than indicated by the difference 

in SNR. 
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FIGURE 3-8    DETECTION PROBABILITY vs II 
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CHAPTER FOUR 

MAXIMUM LIKELIHOOD BEARING ESTIMATION 

In Chapter 3 we have generated characterizations of signal 

detection performance based on the probability density functions of 

Chapter 2. At this stage, we have provided the analytical equipment 

to answer a good many of the questions raised in the literature regard- 

ing the relative merits of the two array configurations we are consi- 

dering. However, before making a general comparison, we should like 

to include another important consideration. 

In addition to detecting the presence or absence of a signal, 

we desire to know the bearing of the signal source precisely. The 

purpose both of steering the array and of seeking to improve its direc- 

tivity by summing the outputs of several hydrophones, is to obtain a 

filter output whose value can be depended upon to show a peak when the 

array is steered in the direction of uie signal source. The precision 

of this technique is, of course, related to the tracking (noise) 

conditions and also to such factors as the accuracy of the steering 

and peak-detecting operations. (Often the "peak-detector' is a sonar 

operator.) 

The precision with which bearing is determined can be calcu- 

lated in some fashion for a given realization of an array system. 

However, what we are interested in discovering here is, given the array 

processor configuration, what is its ultimate capability in establishing 

bearing? An answer to this question could, for example, motivate a 

designer's decision to improve the performance of an array subsystem 
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or component, if the configuration's ultimate capabilities were not 

nearly beinc^ realized. 

In Chapter 5 we show calculations, based on statistical con- 

cepts, which bound the minimum bearing error attainable. In this 

chapter we derive forms for bearing estimators, whose performance we 

shall later compare with the theoretical bounds. 

4.1     MAXIMUM LIKELIHOOD ESTIMATION 

From (1-4) and (1-5), we know that the array filter output, 

if there is no noise, behaves in a known way as a function of the 

bearing, so that we can write y(t) = y(t; a). Assuming we have only 

this filter output to work with, we could determine the bearing by 

inverting this function: ex = a(y). However, since in general there is 

noise present, tHa result of this operation would have to be considered 
* 

an estimate of the bearing, written ex , and illustrated in Figure 4-1. 

And there would be error associated with the estimate. Much attention 

is given in statistics to the problem of finding estimators which yield 

the most accurate (least mean square error or minimum variance) value 

of the parameter being measured. Since we have the probability density 

function at the filter output, we may make use of the results of the 

statistical theory of estimation. 

T28l According to Cramer1 J, the most important general method of 

finding estimates is the maximum likelihood method. Briefly stated, 

this method, as applied to our problem, consists of considering the 

maximum likelihood bearing estimate (a) to be that bearing for which the 

known value of the filter output (y) is the most likely value. That is, 

A 
a = | a: p(y; a)>, p(y; a)|0 (4-1) 
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Therefore, we may determine the maximum likelihood estimate by finding 

the bearing which maximizes p(y: a): 

The importance of this method lies in the property that [29] 

under fairly general assumptions, the maximum likelihood method will 

produce asymptotically efficient estimates, that is estimates whose 

variance approaches the theoretical minimum for certain conditions. 

We shall not be computing the secotvj derivative indicated in 

(4-2) since we have seen in Chapter 2 that the bearing (suitably 

restricted in value) acts somewhat like a location parameter, and thus 

we expect that the solution to the maximum likelihood equation 3p/3a = 0 

to also be the value of u which causes the given value of y to corres- 

pond to the peak of the distribution. Although for small SNR this 

location influence of a changes in that the peak value remains at y = 0, 

we shall assume that the solution of the maximum likelihood equation 

continues to be a maximum. 

4.2     THE MAXIMUM LIKELIHOOD BEARING ESTIMATE FOR THE 

STANDARD ARRAY 

Using (2-25), the probability density function of the filter 

output of the stai.dard or square law array, we tu've the following 

equation for the maximum likelihood bearing estimate: 

3d 

cx=a 2 

WzD^'oM 
a=a 

= 0 (4-3) 
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or 

or 

OK T   /2h  /A 8h|a=a . 2   r . /2h   r\ 3h 
3a 

ia=a 

1 (**) 

>»(r *) 
ah 

l0\c 

where, from Section 2.2.2, we have the notation 

h £ h(a) =^HD(ißsini; N). 

(4-4) 

(4-5) 

(4-6) 

Equation (4-5) corresponds to a special case of the maximum likelihood 

equation for the estimates of the noncentrality parameter of a non- 

T331 central chi-square variäte, as given by MeyerL J. 

4.2.1   THE HIGH SNR CASE 

As shown in Figure 4-2, the ratio of Bessel functions on the 

left hand side of (4-5) approaches unity for large values of the argu- 
2 

ment, satisfied by large SNR (H ). That is, 

I^xJ/yx) = 1, x > 3. 

Thus for H2D2y > 2.25(B')2s2 or h2y > 2.25o2, we obtain 

or, from section 2.2.2, 

h = Sy/o, 

y = s2N2H2D2(-^sina-, N) 

= s2H2sin2(^ßsina)/sin2(]ßsina)  , 

(4-7) 

(4-8) 

(4-9) 

4-5 
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an implicit form which we shall find useful in Section 4.4. From 

Appendix C we have the approximate inverse or explicit forms 

a(y) = arcsin f^/j-^l- §?) 

= f arccos 1 + ■ 48 (&- - \) 
ß2(N2-l) UHS   j 

, fi <  NHs   (4-10) 

= 0, fi > NHs 

where the approximation assumes j(N-l)ß sin a << /l~2. Since the beam- 

width is given at most by ||Nß sin a|<u, this assumption is a valid one. 

It is instructive to note that (4-9) is equivalent to taking 

y(ct) = [E(y) - E(y|H = 0)T~a, (4-11) 

that is, the maximum likelihood estimate for the high SNR case can be 

interpreted as the operation which assumes that the filter output is its 

mean value, less the 1 -ffects of noise. 

4.2.2   THE LOW SNR CASE 

For small values of the argument in (4-5), the ratio of the 

Bessel functions can be approximated by 

I1(x)/I0(X) = .584x e -.26x , x < 3. 

Thus for H2D2y < 2.25(B')2s2, we obtain 

.584 |/y~ exp ■"•52ht^ = c/fi 

(4-12) 

(4-13) 
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or h = 
.52/y 

- W1^) 
lit V     nL       ' 

(4-14) 

m   i 

or, from section 2.2.2, 

D(*N3sina; N) _ rN+2(N-1)a] s    ln/1.;68yM 
"       coiru,- 

lnlN+2(N-l)a' . .52NH/y 
(4-15) 

As for (r-10), we use (D-9) to write 

a(y) = I arccos i  48Q-D) 
I -   o  o 

ßV-1) 

= -f arccos 1 - 48 

e2(N2-l) 

j>H2(N-l)a] s ln l.T68y/s' 
.52NH y m N^TMlä" 

(4-16) 

11 

4.3 THE MAXIMUM LIKELIHOOD BEARING ESTIMATE FOR THE 

MULTIPLICATIVE ARRAY 

For the multiplicative array model, the maximum likelihood 

equation may be written 

3P6(y; a) 
ia=c 

Sa 
8^6 d6 

" 89 da 

a=a 

= iMßcosa^l 

a=a 

3G 0. (4-17) 

Assuming that cos a  / 0, we have, using 6 = 0(a), 

86 

e=e 
= o. (4-18) 
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From [13], formulas 8.972.1 and 9.212.1, we observe that 

exL^(-x) = (^^(r+k+I.K+Ux). (4-19) 

Substituting this expression in (2-23), we have for the probability 

density of the filter output for h, = hp = h 

P6(y; a) s g(6) = a1exp[-a2h2(l-pcos29)]    ^    a^hcosö)1" 

r=0 

x Ir(a4hcos0) TF1(r+1,1; a5h
2sin26),   (4-20) 

where we have tried to simplify the notation somewhat by writing 

a, = a"2exp[-2y/a2(l+D)], a2 « 2/(l-p
2), a3 = (l-p)a/2/y, a4 = 4#/a(l+p), 

and a5 - (l+p)/(l-p). 

Performing the required differentiation of (4-20) with respect 

to e, we obtain 

2 
g'(9) = a1exp[-a2h (l-pccs2e)] 

oo 

-2a2h[h'(l-pcos26)+phsin2e] V a!J(hcose)rI ( ^F^ ) 

a, .    r=0 00 

+ (h'cose-hsine) ^   ra^hcose)1""1  I ( )^F ( ) 

r=0 
00 

+ -/a4(h'cose-hsine)  £ a5(hcose)r[Ir+1( HM( J^F^ ) 

r=o 

2a5hsin9(h'sin^h,:os6) Y   (r+l)aJJ(hcose)rIr( ) 

r=°    * 1F1(r+2,2;a5h
2sin29) (4-21, 

4-9 

ijtiialaiiutm*********,!«*^-..-  ...      .,.......,-  



.. 

I 
I 

.1 

In (4-21) we have used h' = dh/de and have suppressed the arguments of 

functions whenever they are the same as in (4-20). By combining summa- 

tions and noting that rl (x) = x[I -.(x) - I +1(x)], we may reduce (4-21) 

to 
CO 

g'(0) = a1exp[-a2h
2(l-pcos29)] S  (a3hcose)

r 

r=0 

-2a2[h'(l-pcos20) + phsin28]Ir(a4hcose)1F1(r+l,1;a5h2sin20) 

2_,_2, + a4(h'cos0-hsin9)I ,(a4hcos9),F1(r+lf'l;arh sin 6) 

(4-22) 

2.. 2, 
+ 2a5(r+l)hsin0(h'sine+hcos9)Ir(a4hcose)1F1(r+2,2;a5h sin 0) 

A slightly more compact form may be realized by using (4-19) to return to 

the Laquerre polynomials: 

g'(0) = a1exp[-a2h
2(l-pcos20)+a5h

2sin20] ^ (a3hcos0)
! 

r=0 

2., 2, 
-2a2[h

:(l-pcos26)+phsin2O]Ir(a4hcos0)Lr(-a5h sin 9) 

2., 2, 
+ a4(h'cos0-hsine)I ,U4hcos0)L (-a5h sin 0) 

* 2a5hsin0(hsine+hcos0)Ir(a4hcose)L
1(-a5h

2sin29) .  (4-23) 

Our task is to solve th? equation g'(ö) = 0, for e = 9(y). 

However, this we have not been able to do in general. Rother, we next 

show a small SNR approximation to the solution, and for higher SNR, a 

different approach. 

4-10 
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4.3.1   SMALL SNR CASE 

For h sufficiently small, we may find an approximate solution 

by taking the first term of the series. Thus g'(e) = 0 becomes 

0 = -2a?[h'(l-pcos2e)+phsin28]I0(a4hcose) 

+ a4(h'cos6-hsin9)I,(a4hcose) 

+ 2a5hsine(h'sin6+hcos0)I1(a4hcose), (4-2') 

Dropping the hh' terms and supplying the expressions represented by a2 

and a-, we obtain 

-^ [h'(l-pcos20)+phsin20] = ,^(h'cos8-hsine)-^ 
1-p IQ 

I,[4hcosevy7o-(l+p)] 

[4hcose^y/a(l+p)] 

(4-25) 

For convenience we use a different approximation to the ratio of the 

Bessel functions than (4-12). From Figure 4-2 we see that if x is quite 

small, then 

ffi*$.x<l. («6) 
l0y 

With this approximation, (4-25) can be manipulated to yield the implicit 

estimator form, 

/v    A, >\ 

o     /l+p\   h'(l-pcos28)+phsin26 . 

hcose ^1_p'      h'cose-hsine 

In the terms of Section 2.2.1, 

4-11 
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r r 

?2r3/2 
v *   s t-       (B+C\ D'(e/M;M)(B-Ccos26)+CD(e/M;M)sin29 ,, ,ol 

HD(6/M;M)VDW       D'(e/M;M)cose-D(0/M;M)s1ne 

where D'(VN;IC) - f  . f^j^j- [cose -^gjgj»] 

sTTie [cose-Dcos(e/M)]. (4-29) 

For white noise (B = 1 and C = 0), the implicit estimator form (4-28) 

becomes 

sV 
A A      A A    >^ 

_ s  cose-Dcos(e/M) 
/\  A.     A 

HD(D'cose-Dsine)  HD cos2e-Dcosecos(e/M) 

For small e (within the array major lobe), we may approximate: 

(4-30) 

A A  AO 

* sd  1-D-9V2 

or 

n A«    A    AO    O 

s^  i-eV2-D(i-9var) _  

HD l-2e^-D(l-eV2)(l-872M )  HD 1-D-38V2 

y = SV3HD. 

(4-31) 

(4-32) 

From this we obtain the explicit estimator form for the white noise, 

small SNR case, 

a (y) = iarccos [ 1- -ftl (1_ 3fiy)| 
ßV-1) 

(4-33) 

4.3.; A NONCENTRAL CHI-SQUARE APPROXIMATION 

For SNR other than very small, rather than work with (4-23) 

we shall follow the procedure of approximating the density function of 

the filter output y by one which nas a closed form, and then deriving 

the maximum likelihood bearing estimate for the approximate distribution. 

4-12 
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Over a wide range of values for SNR, we have found that a good 

approximation to the probability density function (2-23) for the multi- 

plicative array model is the density function of an equivalent non- 

central chi-square random variable, chosen such that the mean and variance 

of the approximate distribution are the same as the original. 

Let x = d + cy/o2 be a noncentral chi-square variate with two 

degrees of freedom and noncentrality parameter A2. Then we have 

Py(y) = cpx(cy/o
Z+d)/aZ = -\ exp[-lcy/aZ+d+XZ)/2] 

2a' 

J'   ,_2~   _..,_2, x I0(XVcy/at+d), cy/o +d > 0. (4-34) 

From Section 2.3.1, 

E(y) = oZ(p+hZcos20) = °~ [E(x)-d] = 5-{2+X2-d) c c (4-35) 

Var(y) - % [l+p
2+2h2(l+ cos29)j = ^Var(x) = 4q <1+X ) 

c 
2 

In terms of c we can solve (4-35) and (4-36) to yield 

(4-36) 

X2 = ^g [l+p2+2h2(l+pcos26)] - 1 

.2.^2 d = 1+-^ [l+p +2h (l+pcos29)] - c(p+htcos28) 

(4-37) 

(4-38) 

An illustration of this approximation is given by Figure 4-3. 

Again assuming cos a f  0, (4-18) becomes 

9=9 
gPyM 

89 = 0. (4-39) 

For pv(y) as given in (4-34), the maximum likelihood equation then is 

4-13 
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APPROXIMATION TO MULTIPLICATIVE 
ARRAY PROBABILITY DENSITY FUNCTION 

i i 

I  ! 

' 

a=0 
s=l 

M=5 
B=.314 

Noncentral chi-square 
Actual 

Equations (4-34 to 4-36) 

c=4 

FIGURE 4-3 
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(d'+2XX')In(X>/cy/a2+d) l0 

i     ! Ir(X>/cy/aZ+d) [2X s/cy/aZ+d + Xd7 ^cy/a2+d ] (4-40) 

!  i or, using x = cy/a2+d, 

IT(X^x) d' + 2XX' 

IQ(XV£)  2X'^x + Xd'/v'x 

Taking the ratio of the Bessel functions to be unity, we obtain the 

quadratic equation, 

A. A.y\ 

2X'x - (d'+2XX')/x + JUT = 0, 

(4-41) 

(4-42) 

with the solutions 

A      *\    A, 

v5T= d72X',X or cy/o2 + d = ld'/2X')2, X2.  (4-43) 

Putting c = 4 into (4-37) and (4-38), the first solution can 

be expressed 

1-L. 
Z ' 16 a 

A A 

h'[l-(l-p)cos26] + h(1-p)sin26 

h'll+pcos28) - hpsinZe 
3 + 2p(2-p) 

+ 4h^[l-(1-p)cos26].  (4-44) 

Note the slight resemblance of this solution to (4-27). The second 

solution has the much simpler form 

y2 = c
2h2cos29 - o2(i-p) 

= Ms2[MH2D2cos26+C-B/2]. (4-45) 
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This solution also has the form, or nearly so, of E(y) - E(y|H=0). 

For this reason, and for its simplicity, we shall restrict our atten- 

tion to it. An additional motive for preferring (4-45) is that, as the 

SNR becomes very large and P6(y) approaches the normal distribution, 

(4-45) corresponds to the well known maximum likelihood estimate for that 

case [57]. 

To obtain an explicit form a(y) for the estimate, we first note 

that (4-45) can be written 

D2(S/M; M)cos26   = sf\c0J2* - \ (Jy ♦ i - c) (4-46) 
fTsin (8/M)     MH   W ' 

2 " 
sin 26 . 4Ä 

sirfe 
4M2sin2(8/M)     M2sin2(6/M) 

= D2(6/M; 2M) - M2sin2(9/M)D4(o/M; M) 

u (o/n;  cm). (4-47) 

Then, using (D-9) and recalling that e = 1MB sin a, we find 

a(y) = iarccos 1 48 

ß2(4M2-l) \/-T(
J7t!-c) VMH W c        ' 

(4-48) 

4.4 DISTRIBUTIONS OF THE ESTIMATES 

The estimate a(y), being a transformation of a random variable, 

is itself a random variable, whose probability density function is given 

by 

PA(«; «) = p[y(o); a] |dy/da|. (4-49) 

4-16 
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For example, for the multiplicative array, high SNR case, the estimate 

(4-45) has the density function 

PA(»
: a) = P6[o

2h2cos28-a2(i-p); a]2o2h|h'cos2e-hsin2e|e',  (4-50) 

where we continue to use the shorthand notations h = h(e), 6 = e(a). 

Often at this point the analyst will attempt to provide an 

expression for pA(a;a) in the form p»(a;a) = f(a-a). However, since the 

expressions for the density functions are so complex, this objective 

requires much approximation, and there is little to be gained. We shall 

be satisfied here to note that these densities are readily computed from 

(4-49). Instead, this effort will be put into showing the means and 

variances of the estimates for the high SNR cases so that their asumptotic 

behavior may be examined in relationship to the theoretical bounds in the 

next chapter. 

4.4.1   MEAN AND MEAN SQUARE, THE STANDARD ARRAY ESTIMATE 

The high SNR bearing estimate for the standard array, given by 

(4-10), has the mean value 

2 2 2 

E(a) = a"2  f dy arcsin[Kv/l-/y/NHs]exp(-h2-y/a2)I0(2h^y7o) 

0 
1 

= k J   dx arcsin[K'/T^]exp(-h2-kx)I0Uh/!<x') 

0 
1 

= 2k y* dx x arcsin[KvT^exp(-h2-kx2)I0(2hxAl, (4-51) 

0 
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,2U2 2 
where we employ K = Lff-  and k = ^~X~ = hZWZ(te$iMi N). Approximately 

we have E(o) = 2kKe"h    ^dx <Tkx   xA^H lQ(2hxSk) 

0 

-h2 V   V   (kh2)n    (^      r,.  Jn+2mH 

n=0 m=0 
IP/- nlnT -iT    / dx x1-"'^'/!^ 

Ä       00 00 

* 2kKe'h   2   I ^  ^ B(3/2. 2n+2m+2), (4-52) 
n=0 m=0 

where B is the beta function, B(u,v) = r(u) r(v)/r(u+v).    By a simple 

change of summation index we may write 

»    m 2xn   / ,.\m-n 

EM - 2«e"h   2   I ^ fe  B<3/2' 2m+2> 
m=0 n=0 

s 2kKe"h   S    mlT" 8{3/2' 2tn+2) Lm(h '• 
m=0 

By a similar process we find that 

(4-53) 

\m 
E[(a)2] = 2kK2e"h J ^- B(2, 2m+2) Lm(h

2).       (4-54) 

m=0 
The beta functions B(3/2, 2n+2m+2), as shown in Figure 4-4, 

can be approximated by the geometric progression 

B(3/2, 2n+2ir,2) = B(3/2,2)x(.415)
n+m . (4-55) 
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U Substituting this approximation in (4-52), we obtain 

E(a)- L* ,<-4     mm mi 
n-*C m=0 

2kKB(3/2, 2)exp(-h2-.415k) In(2h/3l5k) 

or    E(a) = kKB(3/2, 2)exp[-(h-/TT5kT]/v ir/TATSkh, 

(4-56) 

(4-57) 

where we have used the large argument relation for the Bessel function, 

IQ{x) = ex//27x. Substituting for K, k, and h, we fi nd 

2 .1/2 
E(a) ■ J-l6—  (Ir) "exp[-NH2(D-.644)2/B']. 

PvW -1) 

(4-58) 

«N2- In a similar manner we approximate E[(a) ] by using 

B(2, 2n+2m+2) = B(2, 2)x(.335)n+m. (4-59) 

This choice of approximation is illustrated in Figure 4-5. From (4-54), 

the mean square of the bearing estimate becomes 

E[(a)2] 2kK2e-h V (--335k)m B(2> 2) L(h2} 

m=0 
m! 

= 2klCB(2, 2)exp(-h -.335k) IQ(??h/335k) 

or     E[(a)2] = kK2B(2, 2)exp[-(h-/33Tr,2]A/ir7l3tk=h . 

(4-60) 

(4-61) 

Substituting for K, k, and h, the expression for the mean square is 
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FIGURE 4-5 
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< 

E[(a)2] *   2
2197

2      fflr )     exp[-NH2(D-.579)2/B']. (4-62) 

These approximations (4-62) and (4-58) are useful only for 

smaller values of SNR (k = NH2/B'  < 1). 

4.4.2 MEAN AND MEAN SQUARE, THE MULTIPLICATIVE ARRAY ESTIMATE 

For the multiplicative array model, the high SNR bearing 

estimate we have developed is given by (4-48), which can also be written 

a(y) = arcsin K[l-%/fy/c^2+i-p)/k]1/2 , 0 < y/o2H-p< k 

11  -•- «   ~,_2 arcsin K, y/oz+*-p < 0 (4-63) 

s 0, y/o2+£-p > k, 

2    I   fi 
where, in analogy with, the last section we here use K = y. /—5—  and 

2    2 ? V4T-1 
k = MH7B = *r/lr(&s1no; M). 

To obtain the mean and mean square of a(y), we shall use the 

noncentral chi-square approximate density (4-34), with the constant c 

chosen to be 4. The mean of the estimate is then 

q2(p4) 
E(a) =  J dy arcsinK py(y) 

-c2d/4 

c2(k+p4)   
+     f dy arcsin   K[l-v/fy7äZ+^-p)/k]1/z py(y). 

(4-64) 

The first integral is approximately 
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u 
4(p4)+d 

/ 
4y K(a2/4) py[a

2(x-d)/4] 

4(p4)+d 

| f   dx exp[-(x+X2)/2] I0(XÄ) 
0 

K- Kq[x,>A(p4)+d|, (4-65) 

I 

Q being Marcum's Q-function. 

The second integral, making the same approximation as for the 

first, is 

1 

K /dx kaVw^py[a2(kx+P4)] 
0 

1 

* 2Kk   Jüx\fl^7x exp[-(4kx+4p-2+d+X2)/2]I()(Xv/4kx+4p-2+d) 
0 (4-66) 

1 2 

■ 4Kk exp(-X2/2-2g)    ^ dx x/J-7 e~2kx I0[2w£?+g!l 
0 

>>'.> 00 

4Kk exp(-X2/2-29) I  I  (£( <y 
n=0 m=0 

/■ 
x /  dx x^/Rl+kx^g)" , (4-67) 

where we use the notation g = p - I + d/4. Employing [13], formula 

3.259.1, we reduce (4-67) to 

m=0 n=0 r=0 
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•0 00 00 _ 
2»n+r   , «..\m,u >r 

t    i 

U 

4Kkexp(-X2/2-2g) J  J  J {g^ i=$-l|) 6(3/2,2^2^2) 
m=0 n=0 r=0 

eo    oo    m 

4Kkexp(,X2/2-2g) J  J  V |ägg |ri^(|)r
B(3/2,2m+2) 

m=0 n=0 r=0 

oo      oo . 

= 4Kkexp(-X2/2-2g) ]T   J  *9\i(n+m)i    B(3/2»2"»2) Ox2/2)' (4"68) 

m=0 n=0 

a development analogous to (4-53).   Thus for the mean value of the 

multiplicative array bearing estimate we have 

E(a) = K - KQ(X, 2v§) + 4Kkexp(-X2/2-2g) 

00 00 

«I 2 WB!3/2,2mt2) L>2/2) ■   (4"69) 
m=0 n=0 

Going through a very similar process we find for the mean 

square, 

k2n   _   i/2        i/2nh      l/Z\   a.   /Ik'^l/Qvn^-Ti'-; E[(a)2] = K2 - K2Q(X, 2/g) + 4K2kexp(-XZ/2-2g) 

eo      oo 

»21'TOl''"'wi.fa     (4-70) 
m=0 n=0 

The notation used in (4-69) and (4-70) is summarized by 

K = 4.9/ß/4M2-l k = MH2/B 

X2 ■ [B2+2C2+4MH2D2(£ßsina; M)(B+Ccos29)]/B2 

d * 2 + X2 - 4MH2D2(±3sina; M)cos26/3-4C/B (4-71) 

g = d/4 - .5 + C/B » X2/4 - MH2D2(ißsina; M)cos20/B. 
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4.4.3   COMPUTED RESULTS 

Specific cases of the probability density functions of the 

estimates (4-10) and (4-48) are given in Figures 4-6 and 4-7 for several 

values of the actual bearing, computed according to (4-50). At first 

sight what seems remarkable about these curves is that the bearing esti- 

mates at which the peak values are located do not correspond closely to 

the actual bearing. However, this in itself is not a reliable indication 

that the mean values diverge from what is desirable -- an unbiased 

estimate — since there is a discrete probability that the value of the 

estimate is zero in each case. For the multiplicative array bearing esti- 

mate, there is also a discrete probability that the estimate equals its 

maximum value, arcsinK, not shown in the figure. 

More revealing are the results for the mean values of the esti- 

mates, shown in Figures 4-8 and 4-9 versus actual bearing, with a straight 

line representing an unbiased estimator drawn in for reference. The 

trend, as the SNR increases, toward u.ibiasedness is clearly seen. This 

is comforting, since the theory of maximum likelihood estimation predicts 

this pehnomenon. These computations, based on (4-53) and (4-69), required 

on the order of 50 terms of each summation for H2 = 1,2 and 100 terms for 

y> = 4. 

The curves drawn with dashed lines in Figure 4-9 represent the 

series term in (4-69), so that the importance of the Q term is seen. 

It appears from our 1imited computations that the standard and 

the multiplicative array estimators on the whole perform equally well 

with respect to bias. A kind of "end effect" is observed in either case 
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when a approaches its maximum value. The difference is that the 

standard array estimator behaves smoothly in this regard, while the 

multiplicative estimator displays a more drastic reaction to this 

limitation, imposed by the formulation (4-63) of the estimator. It 

should be remembered that, if our attention is mainly upon bearings 

within the major lobe (a < arcsin .2 for the standard, a < arcsin .1 

for the multiplicative), then the important region is that near a = 0. 

Computations of mean square, variance, and mean square error 

are shown in Figures 4-10 and 4-11. luin the curves it is evident that 

with respect to tnese measures, the stanoard array estimator performs 

better than the multiplicative for increasing bearing. 

Further consideration of estimator variance and mean square 

error is given in the next chapter, where we compare them with theoreti- 

cal bounds. 
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CHAPTER FIVE 

BEARING ESTIMATION PERFORMANCE 

As mentioned in the introduction to Chapter 4, in addition 

to characterizing the detection performance of the two array models we 

are studying, we also desire to evaluate the bearing estimation capa- 

bilities of these configurations. That is, we should like to know with 

what potential precision the filter outputs of these array processing 

models can be operated upon to yield a value for the bearing of the 

signal source. 

In the previous chapter we derived several forms for maximum 

likelihood bearing estimators, based on the probability density functions 

at the filter outputs which were found in Chapter 2. In this chapter 

we shall examine the performance of these estimators in terms of trie 

relationship between the theoretical minimum estimator variance and the 

actual variance of the given estimator, as a function of SNR. 

Although there are other, more exact bounds [34,38], we shall 

be making use of the Cramer-Rao bound on the variance of an estimator: 

Var(a) *[$&)] 91np(w; g) 
3a (5-1) 

where p(w; a) represents the distribution on which the estimate of the 

parameter is based [16], and where certain regularity conditions on the 

probability density [39] hold. 

5-i 
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Bounds will first be calculated based on the Gaussian distri- 

butions seen by the array e sments, and also those gaussian distributions 

holding at the array sums. Then bounds based on the filter output distri- 

butions will be calculated. These latter bounds we shall refer to in 

a general way as noncentral chi-square bounds. 

5.1     CRAMER-RAO BOUNDS FOR GAUSSIAN DISTRIBUTIONS 

If, analogous to Section 2.1.1, we annotate the N samples 

(W|) of a signal-plus-noise process by the vector w and the corres- 

ponding signal components {x.} by x_, the joint distribution for the 

Gaussian case is 

P(w; o) N/o, exp [-Hw-x) 'K'1 (w-x)],    (5-2) 

where a is the parameter of interest and KN = E[(w-x)(w-xJ'] is the 

covariance matrix of the samples, which is symmetric. For this expres- 

sion of the distribution, we have 

[^^]2 = (|)^(w-x,(w-x,'K-yn) («) and 

so that t^e expectation of (5-4) is given by 

(^^[Mfw-x)-]^)^!)^!) (5-5) 

5-2 
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5.1.1   APPLICATION TO THE ARRAY INPUTS 

If the N hydrophone inputs are considered in their narrowband, 

quadrature representations, then w in (5-1) is a vector with 2N com- 

ponents : 

w * 
*c 

*s 

'nkc + \c 

nks + xks J 

(5-6) 

Li 

■ • 

where, if the phase reference is the center of the array, 

x|cc I5 Acos Ci-(2k-N-l)ßsina] 

xks = As in fi(2k-N-l)3sina] 
k-l,2,...N. (5-7) 

The covariance matrix is 2N x 2N, with the form 

^N = 
EECuc-^Jfec-Xg)'] E [(Wg-^CWs-Xs)'] 

EllV^W'] E[(vV(V*s,,] 
(5-8) 

For white noise, KpN is a diagonal matrix; further, if (as we have been 
p 

assuming) the noise variances at the elements are equal, then K~N = s I2M, 

-1     2 so that K2N = IOM/
S
 ' where I«N is the 2N x 2N identity matrix. For this 

case, equation (5-5) becomes 

N ' ax. 2 
(g«\ _1 /3x\  1  V1 / kc \  / ks \ 
dä)hn(dä)  = 1 2,    ("&T/ + '"3ÖT/ 

k=l 

N 

s   k=l 

= ^-N(N2-l)H232cos2o. 

(5-9) 

(5-10) 

(5-11) 
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The form (5-10) is equivalent to that shown by Seidman [34] in the same 

case. The error of a bearing estimate a(w; a) based on the array input 

noise distribution for white noise is bounded by 

•3 r/^2,1,,1,2 1N|J2„2 2 
Var (a) >6[^(a)]VN(N*-1)HVcos\i. -3a 5^12) 

5.1.2   APPLICATION TO THE ARRAY SUMS 

For the standard array model, which has the single array sum 

(1-4), the quadrature components are 

(5-13) 

v»   " n. + NAD(£ßsina; N)cos[KN-l)ßsina] c      c 

w   = n   + NAD(ißsina; N)sin[i(N-l)ßsina], 
5 & 

where n and n are modeled as independent Gaussian variates with 

variances a2 = KB!s (Section 2.2.2). Thus (5-5) in this case is 

2 2 L     2 
N A ß

2
cos a  [|D'cos[i(N-l)ßsino] - (N-l)Dsin[i(N-l)ßsina]|2 

+ |D's1nDi-(N-l)ßs1na] + (N-l)Dcos[i(N-l)ßsina]|2j 

(5-14) = NHißWa   [(D.,2 + (||.1)2^3i 

so that an estimate a(w ,w : a) based on the standard array sum has the 

bound 

Var (a) > 2B' [^E(a)]2/NH2ß2cos2a[(D')2 + (N-1)2D2].    (5-15) 

For the two array sums of the multiplicative array model, the 

quadrature noise components have the covariance matrix given by (1-7). 
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Also, from (1-5) we have 

x. 3 Scose., x,s = Ssin8, 

Xg. e Scos62, x2s = Ssin82 

where      S = MADf&sina; M) 

61 =i(M-l)ßsina, 9£ = ±(3M-l)esina 

(5-16) 

(5-17) 

.4 For what we have called our main case, the quadratic form (5-5) is 

1 

cZ0-p2) 

,3x,^2  ,3x,^2  ,3x„_v.2  ,3x„_x2 

(5-18) 

M2A2g2cos2g 

4a2(l-p2) I 
[D'cos61-(M-l)Dsine1]

2 + [D'sin91+(M-l)Dcos61]
2 

+ [D'cos82-(3M-l)Dsin92]
2 + [D'sin92+(3M-l)Dcose2]

2 

2p[D,cos9-i-(M-l)Dsin91][D'cos92-(3M-l)Dsin92] 

2p[D'sin81+(M-l)Dcos91][D
,sin9,+(3M-l)Dcos9,] '1 '1 (5-19) 

MH ß c0* a |2(D')2+[(M-1)2+(3M-1)2]D2 

2B(l-p2)  ' 

-2pcos28[(D')2+(M-l)(3M-1)D2]-4pMDD'sin2e|,   (5-20) 

where 2e = e, - e„. If the phase reference is made the center of the 

array, that is if 
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; 1 

©! a -02 
ai(2M-l)ßs1no, (5-21) 

then (5-5) becomes 

2 2  2 
W g c0| a  2[(D')2+(2M-l)2D2](l-pcos26) 
2B(1-P2) 

^„2, 2 2  2 
^J los a     [(D')2+(2M-l)tD£](B-CcosM3sina). (5-22) 

B-r 

Therefore, an estimate a(w; a) based on the two array sums has an error 

bound, 

Var(i) > (B2-C2)[|5E(a)]
2/MH2ß2cos2a[(D')2+(2M^)2D2](B-CcosMßsinci). 

(5-23) 

5.1.3   COMPARISON OF BOUNDS AT ARRAY SUMS 

For unbiased estimates, that is for E(a) = a, we may compare 

the minimum estimator variances of the two array configurations by com- 

paring (5-15) and (5-23). Let the minimum variances of the standard 

and multiplicative arrays be denoted o2.  and a2.  respectively. r J min,s    min,m  r J 

Then, for the same number of elements (N=2M), 

C,_ .  (D' )2+(N-l)2D2    D; rrnn.s _ v N/2j 

oi,..  (D')2 + (IK-)2 D2    Di min.m  x ff 

N/2 *   U_K[Z 

N    UN 
(5-24) 

where D„ = DQ ß sin a; K). Since DN/? * DN for the angles of interest, 

we have 
W2 ' UN 

_2 2 
min.s >  min.m 

(5-25) 

at the array sums, with equality holding at zero bearing.    For example, 

for N = 10, ß = IT, and a = .05, the ratio is .948/.808 = 1.24. 

5-6 

*amk M««Hil ■    - .■ i»  i     mi«—BXMMI«M—*»*—-*--     —-■■■ - 



^m^m^S!t-k-JJKJWyfiiwu*waffft1* *■ r^w-wr^m^** •&> ^.ii.i,ptm.n.iJ,v 
■. -vg;.'.» ;■*■■*■' «?,■»*■ T«— - ■ 5^ 

5.2     CRAMER-RMü BOUND FOR NONCENTRAL CHI-SQUARE DISTRIBUTIONS 

Let x be a noncentral chi-square random variable with two 

degrees of freedom and noncentrality parameter x2. Then the probability 

den^'ty function of x is 

p(x) = (l/2)exp[-(x+X2)/2] I0(Av£), (5-26) 

where x = x(a), a a parameter to be estimated. For this density func- 

tion, 

MxA) 
30       UxA) 

x'^x" 

so that E m 21 of? f  Ii(X^() 

I  Vx^) 
+ E 

IT(X^x)' 12 

Li0(Xv6T) 

- (x-)2 X2 - e^'2 

CO 

/dx^x e"x/2IT(X^() 

(5-27) 

: i 

+ 0/2)e"^
2 /L.-^il^MXÄ) 
^O      VX<^ 

(5-28) 

From Gradshteyn and Ryzhik ;[13], formulas 6.643.2, 9.220.2) and 

Middleton ([16], formula A.1.19b) we have for the first integral, 

< 

/• 
dx^T e"x/2 IT(X/t) = 2A1F1(1,2; X

2/2) = - \- (l-exV2).   (5-29) 
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For the second integral we h?ve approximately, 

/' 
dx x e IT(X^) » /"dx x e"x/2 IT(X^)      (5-30) 

« |x^T 1F1(5/2,2; X
Z/2) 

■ \fö[\ 1F1(l/2.2; X2/2) + (l+X2/2)1F1(3/2,2; X2/2)] 

2 
«. | vET eX /4[(3+X2)I0(x2/4) + (l+X2)I1(X2/4)], (5-31) 

aguir .wking use of [13] and [16]. 

Therefore, (5-28) becomes 

11 

. i 

,21 
\  3a / 

= (\')c\*c + 4e'A"- (l-eA/fc) 

+ Xr^Te*XV4[(3+X2)l0(X
2/4) + (1+X2)I1(X

2/4)]| 

(5-32) 

Tor large arguments of the Ressel functions (or large x) we may write, 

m = (X')2(2X2-2+4e"X /2) = 2(X')2(X2-1).       (5-33) 

5.2.1    CRAMER-RAO BOUND FOR THE STANDARD ARRAY FILTER OUTPUT 

For the standard array filter output, which is distributed 

as a noncentral chi-square variable, we have 

5-8 
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D 
A2* 2h2 =» 2NH2D2(*ßsiru; N)/B'. 

Thus the denominator of the Cramer-Rao bound expression (5-1) is 

21 pnPsoW 
= 4(h')2(2h2-1) 

= 2N3H2ß2cos2a(D')2(2NH2D2-B')/(B')2. 

(5-34) 

(5-35) 

From (4-53) we may write, using [13], formula 8.971, 

\IT1 

|jE(a) =-2Kk2DD'Nßcosae~kD   £ ^]- B(3/2,2m+2)[Lm+L^1] 

m=0 

\m 
= -2Kk2DD'ßcosae"kDN S ^jjjj- B(3/2,2m+2) L^(kD2),     (5-36) 

m=0 

2      ? since h   =kD , so that 

[f^E(a)]2 = 4K2k4D2(D')Wcos2a e 

I 
m=0 

m m 
mrB(3/2,2m+2) L^kD2) (5-37) 

The Cramer-Rao bound for the standard array filter output 

is then the ratio of (5-37) to (5-35), using z to denote the series: 

Var(a) > 2K2N3H6D2( E )V2ND H /B' /(B')2(2NH2D2-B') 

*24N2H4(Z   )V2ND2H2/B' /(B')V(N2-1). (5-38) 
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_ For white noise (B1 =1) this expression becomes 

3 . 22 
Var(a) >24N2H4( £W)V2NDH   /ß2(N2-l), (5-39) 

and when the bearing is zero also, 

1] 2 
il Var(a)   >24N2H4(Z Wt0)V

2:W   /ß2(N2-l). (5-40) 

I  n 

5.2.2 CRAMER-RAO BOUND FOR THE MULTIPLICATIVE ARRAY FILTER OUTPUT 

For the multiplicative array filter output, which is distri- 

buted approximately as a noncentral chi-square variable, we have from 

(4-71) and Section 4.3.2, 

X2 = 1 + 2p2 + 4h2(l+pcos29) 

= [B2 + 2C2 + 4MHV(£ßsina; M)(B+CcosH3sU 0]/B2. (5-41) 

The "x" in (5-26) corresponds here to 4y/o2+d, where y is the filter 

output.    The expression (5-33) may be used here if we can say that 

3x/3a = v,, as assumed in (5-27) and in the following analysis.    But 

la = 5T = h [3 ' 4p + 2p2 + 4h* " 4h2(l-p)cos2e] 

= 4M2H2Dßcosa {D'[B-(B-C)cos29] + D(B-C)sin26}/B2.     (5-42) 

For white noise (B = 1, C = 0) . is relation is 

Ü = 8M2H2Dßcosasine(D'sin9+Dcos6) * 0 as a > 0.    (5-43) 

Thus, though we shall use (5-33), we do so with the understanding that 

the solution involves this additional approximation when the bearing 

is nonzero. 
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Proceeding to apply (5-33), then, we have 

/ilnpJylY n2,^2 2\I/9M2M2. 2(XT(XC-1) = 2[(X'),/2A]t(Xc-l) 

[4M2H2Dßcosa(D'B+D'Ccüs29-DCsin29)12 

B2 + 2C2 + 4MH2D2(B+Ccos28) 

x   [2C2 + 4MH2D2(B-K)cos29)]/2B2. 

For white noise, 

t np(y) 
da 

= 32M
5H6D4g2cos2a(D')2 

1 + 4MH2D2 

Using (4-69), we may write 

^(a) = -KX'|rQ(X, 2SÖ)  - 4Kkexp(-X2/2-2g) XX' d\ 

(5-44) 

(5-45) 

!  i 

OS    00 

(5-46) FTHO n=0 

where g = d/4 + C/B - .5. Representing the series by n,  we have 

. [|^(a)]2 = K2(X')2[|XQ(X, 2^g) + 4kXexp(-X
2/2-2g)ZZ]2, (5-47) 

and the Cramer-Rao oound for the multiplicative array filter output 

may be expressed, using (5-44), 

2 
Var(£) > —£—[JLQ(X, Uy) + 4kXexp(-X2/2-2g)lz]2, (5-48) 

2(X -1) l3A J 
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where the notation is given by (4-71). For small angles, the Q term 

vanishes, yielding 

Var(a) * 8K2k2A2exp(-A2-4g)(ZZ)2/(X2-l). (5-49) 

For white noise we obtain for small angles, 

Var(;, > If^L &$L exp[-4-4MH2D2(2-cos2e)](SI)2.   (5-50) 
ßV4M"-i I+4M*TD* 

5.3    COMPUTED RESULTS 

Computations of the various bounds on estimator error derived 

in this chapter are shown in the accompanying figures. 

In Figure 5-1, we show diagrammatically how these bounds 

correspond to the density functions at different points in the array 

models. The bound at the array inputs (5-12) is based on the joint 

probability density function of the outputs of the array elements, and 

take into account the basic geometry of the array. The bounds (5-15) 

and (5-23) are based on the density functions of the array sums, and 

reflect knowledge of the directivity gaiiied by the summing. And, the 

blinds (5-38) and (5-46) are baser on the filter otuput probability 

density functions, and incorporate the effects of the nonlinear processing 

involved in detection. 

This procedure of computing bounds at several points in a 

system is somewhat unusual, but was undertaken for two reasons: (1) after 

the summations, to provide a basis of comparison where the two array systems 

begin to differ; (2) after the filters, partly out of curiosity and 

partly to obtain a measure of the effects of the nonlinear processing. 

The effort was worthwhile if only for the interesting discussions the 
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results have stimulated thus far, points which we shall mention in the 

following presentation of the numerical results. 

Figure 5-2 displays the bounds (5-15) and (5-23) in comparison 

with (5-12) for estimators assumed to be unbiased, that is for which 
2       2 E(ct) = a, for H = 1 and H =2, versus actual bearing. The arrays are 

assumed to have ten elements and half-wavelength spacing. There are two 

significant features of this figure. The first is that for small bearings 

the bounds computed from the aensity functions at the array sums are 

lower than that computed at the array inputs. In fact, if we co;npare 

(5-15) and (5-12) for zero bearing we find that 

Bound at sums   1 N-H     n tr ci\ 
Bound at inputs " 3 N-l ' a '  u' u"ö,; 

where N is the number of elements. Thus for N = 2 we see that the bounds 

are indeed equivalent, so that for other values of N the comparison 

should be valid. On the other hand, given the manner in which the bear- 

ing is "encoded" or embedded in the signal terms and recalling the results 

obtained for estimator means in Chapter 4, we cannot push this comparison 

ve»"y far since it appears likely that estimates of bearing based on the 
* 

\   '■ summations will in general be biased. 

The second feature to note in Figure 5-2 is that the bound 

(5-23) for the multiplicative array bearing estimate lies below that for 

the square-law or standard array (5-15). This has already been noted in 

Section 5.1.3, and implies that the accuracy of the multiplicative 

configuration's two summation (split-beam) approach is potentially 

better for bearing estimation. Also, the increasing error for higher 

angles typifies the cost of beamforming. 
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1. 

Further comparisons among these bounds are illustrated in 

Figure 5-3, versus SNR. Again, the position of the bound corresponding 

to the array sums of the multiplicative array model relative to that of 

the standard model would seem to imply that the multiplicative array 

promises better performance for nonzero values of bearing, as noted in 

Section 5.1.3. 

The somewhat difficult to compute noncentral chi-square bounds, 

(5-38) for the standard array estimator and (5-48) for the multipli- 

cative, are shown versus true bearing in Figure 5-4. Since estimator 

bias is included in these bounds, these curves seem to be informing us 

that the combination of the nonlinear processing and the particular 

estimator forms we have selected promise much improved performance over 

that achievable at the array sums, for this range of bearings. However, 

it may be also, as Seidman implies in similar cases [34], that the 

Cramer-Pao bounding technique yields a loose (too small) bound for the 

error over the range of bearings and SNR in which we are interested. 

Estimator error curves from Figures 4-10 and 4-11 are super- 

imposed in Figure 5-5 versus true bearing. From their shape, it is 

obvious that these curves are "close relatives" to the post-filter 

bounds in Figure 5-4. However, it is also manifest that these esti- 

mators do not achieve tue error performance implied by the post-filter 

bounds. Rather, the actual error curves are more closely bounded by 

the bounds of Figure 5-2. This occurrence, we believe, indicates the 

looseness of the post-filter bounds. 
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Judging by the manner in which the actual estinator errors 

behave with increased SNR (decreasing not nearly as "fast" as the 

bounds), we may observe that the particular forms for the estimators, 

though obtained by means of the maximum lücelihwu method, are not 

asymptotically efficiert. That is, from the data we have obtained, 

the error, though decreasing with higher SNR, does not converge toward 

the lower bound. Again, we remark that this may be due to the limita- 

tions of the bounding technique, but quite likely also the estimator 

forms, being approximations, are therefore suboptimum. 
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CHAPTER SIX 

CONCLUSIONS 

With this chapter we conclude this work and take stock of what 

has been done. First, the work is summarized, with particular emphasis 

upon what are considered to be the primary results. These comments are 

then qualified or put into perspective by a more critical review of the 

assumptions and methods employed. Finally, suggestions for improvements 

and extensions of the work are given. 

6.1     SUMMARY 

We began by describing a "debate" in the literature over the 

relative merits of what were termed the standard and the multiplicative 

processing of signals intercepted by linear arrays of receiving elements 

(hydrophones, for definitcness). Our conception of this debate was to 

that a considerable degree the issues are clouded by insufficient charac- 

terization of the random processes involved, in that some of the more 

important performance measures by which the two configurations ought to 

be compared are probabilistic in nature (e.g., probability of detection). 

The goal of this work, therefore, was set to provide at least a partial 

remedy to this situation by applying some of the analytical techniques of 

statistical communication theory to the problem, with a view toward system 

comparison. 

Because a kind of "gain/bandwidth" tradeoff exists for analyses, 

rather simple narrowband models of standard, or square law, and multipli- 

cative array processing systems were chosen so that f,.!l"i attention could 
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[] 
be given to as rigorous an analysis of the performance of these systems 

as our abilities would permit. In this fashion we were enabled to include 

as generalizations the various array parameters, such as the number of 

elements, the inter-element spacing, and the noise covariances. 

A rather general probability density function for the filter out- 

put of the narrowband array processor was derived by the direct method. 

This, we believe, is our basic result in the sense that the remainder of 

the work consists of application. The degree of generality is such that 

the effects of all the model parameters can be studied. Moreover, alternate 

computational forms were given for the main case, in which the array was 

considered symmetric and the noise assumed to have a spectrum even about 

the bandpass center frequency. 

Theorizing a typical Neyman-Pearson characterization of signal 

detection at the filter outputs of the models, we were able to use the 

probability densities to calculate detection and false alarm probabilities 

and receiver operating characteristics. From the numerical results 

obtained, we observe that the standard detector or processor is only wery 

slightly better than the multiplicative in terms of signal detection, so 

that we would assume that the better beamfonm'ng property of the multipli- 

cative array gives it the edge in this category. 

The more difficult area of application of the probability density 

functions was in exploring the bearing estimation capabilities of the 

arrays. We found ourselves unable to solve the general maximum likelihood 

equation for other than very small SNR. However, our exact knowledge of 

the distribution of the filter output made it possible to select as a good 
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approximation the somewhat more tractable noncentral chi-square density 

function, with a linear function of the multiplicative array filter out- 

put as its argument. Forms of maximum likelihood estimators of bearing 

were shown for both high and low SNR cases for both array models. 

Further treatment was given to these estimators for the high 

SNR cases, in the form of showing their means and mean squares, as well 

as in displaying example computations of their probability distributions. 

It was seen that these estimators do approach unbiasedness, although our 

modeling of the multiplicative array estimator apparently had a negative 

effect on its performance in this respect. Cramer-Rao bounds on the 

minimum estimator error were calculated for various points in the array 

systems, with the bound based on the density function at the array sums 

coming the closest to the actual mean square errors of the estimators. 

Although with respect to mean square error, the standard array estimator 

appeared to perform slightly better, it appeared also that for some 

ranges of bearing the multiplicative crray estimator is better. Neither 

of the two specific forms for the estimators we selected was very 

efficient, however, an occurrence which we attribute to the amount of 

approximation involved in their derivation. 

6.2     CRITIQUE 

In keeping with our goal to shed light on the discussion of 

array performance, we now offer some critical comments, pro and con, on 

the information which we have generated to assist the reader in assessing 

it. 

We believe that the derivation of the probability density 

functions we have shown represents an important contribution to the know- 

ledge in this area, to the extent that the popular approach on which it 
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Is based (utilizing rather idealistic conceptions of lowpass filtering) 

1s faithful to the behavior of narrowband systems. We should like to 

remind the reader that several of the parameters on which the distribution 

is conditioned, such as bearing and signal amplitude, might more realis- 

tically be treated as random variables. Also, the validity of assuming 

stationary Gaussian noise processes, although a popular procedure, is 

sometimes questionable for underwater applications. 

To our knowledge, the detection analysis which we have offered 

is, in its exactness, also a "step input" to the narrow field for which 

it applies, although we would not be surprised to discover that similar 

data exists in various classified memoranda. 

Most comparative detection analyses which have come to our 

attention, besides those cited in Chapter 1, rely upon detector output 

SNR as a figure of ^nerit (eg., [58-60]). While prob?bility of detection 

is indeed proportional to SNR, we have demonstrated that comparison on 

the basis of SNR may exaggerate the advantage of the system having the 

greater SNR. However, this is not to discount this approach where the 

comparison involves detectors with the same type of output probability 

density function, when this property has been shown, as in optimization 

of a given configuration [61, 62]. 

The amount of data which we have shown is small, but we offer 

our computer programs in Appendix D as a cover for this deficiency, if it 

be such. 

The numerical results of our investigation of maximum likelihood 

bearing estimation from the filter outputs are somewhat sparse, in pro- 

portion to the amount of labor spent in derivation. However, we are 
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satisfied that the several theoretical expressions we have shown are 

useful accomplishments in themselves, going by the lack of assistance 

offered by the literature in this area. It is worth noting that though 

the feasibility of optimally estimating bearing using the filter outputs 

has been demonstrated, a more reasonable approach perhaps is to recon- 

sider the entire configuration for these purposes. Stremler and Brown 

[54], for example, show a bearing estimating system using a phase detector. 

Also, split-beam and monopulse techniques are popular (e.g., [53, 58]). 

6.3     SUGGESTIONS FOR FURTHER WORK 

There are several directions which improvements and extensions 

of this work may take. We suggest a few examples: 

— Direct application: using the PDF's and detection analysis 

to evaluate similar systems, such as the split-beam tracker, for which 

the analysis either applies or can be modified to apply. 

— Further generalization: expanding the classes of array 

geometries; treating ncndeterministic or unknown signals; considering 

joint estimation of bearing, SNR (see [55]), and perhaps range; treating 

nonstationary/nongaussian noise processes. 

-- Improvements: using numerical methods to calculate more 

precise error bounds and to simulate more exact forms of the maximum 

likelihood estimator (see [56]); additional theoretical investigations 

to specify the system comparison problem over the broader range of 

bearings; a closer examination of the small SNR case. 
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APPENDIX A 

DISCUSSION OF THE ARRAY INPUT NOISE PROCESS 

Let the array input noise process be denoted v(x,t) before 

steering and n(x,t) after sterring, where x represents distance along 

the array, with x=0 at the center of the 2M.elements. Let v(x,t) be 

Gaussian, zero-mean, and stationary; consequently so is n(x,t). 

The steering's effect of the noise "sample" at the k:th hydro- 

phone shall be characterized by the relationship 

nk(t) = vR[t + (k-M-i)T], k = 1,2,...,2M (A-l) 

A.l     AN ASSUMPTION 

If R(T) is t'.ie normalized autocorrelation function of the 

noise process before steering, let us assume that we may combine time 

and space correlation along the array such that the covariance matrix 

of the noise after steering is given by 

E[nk(t)nm(t)] = E[vk[t + (k-M-OT]vm[t + (m-M-i)T] 

(A-2) 

= Rta[(-k)T] - rkmsksmR[(m^k)T], 

where the P..(T) are the interelement crosscorrelation functions, the 

{rk } are the "spatial correlation" coefficients, and the {s?} are the 

noise variances at the individual hydrophones. 

In other words, we are supposing that the effects of steering 

on the noise process «variances can be modeled by the "cascading" of 

A-l 
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1 ! 
spatial effects (present for no steering, or T=0) and time delay 

||        effects, represented by the autocorrelation function of the process. 

A.1.1   IMPLICATIONS FOR THE GENERAL CASE 
I 4t The covariances of the multiplicative array sums are given 

t   t   ■ 

by 

M   M 

(the sum of the 'upper left quarter1 of the array noise covariance 

matrix), 

M  2M 
E(n,n?) = pa^ap = I       I     r. s.s_R[(m-k)T]        (A-4) 

1 £ ' c     k=l m=M+l Km K m 

(the sum of the 'upper right quarter1 or 'lower left quarter' of the 

array noise covariance matrix), and 

2M  2M 
E(n|) = a\ -I I     rkmsk$R[(m-k)T] (A-5) 1 L     k=M+l m=M+l Km K m 

A.1.2   IMPLICATIONS FOR THE NARROWBAND CASE 

In the narrowband case we write v.(t) = v . (t) cos tut + 

v k(t) sin tot. Davenport and Root [12] show that we may write 

E[vck(t)v k(t+x)] = E[wsk(t)vsk(t+T)] = s2 f dfW (f) cos 2irfT 

■ s2 RC(T), and (A.6) 

A-2 
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E[vc|c(t)vsk(t+T)] = -E[vck(t+r)v k(t)] = s2   f dfW (f) sin 2irfx 
JLcD 

ss?y^ (A-7) 

where W (f) is the normalized noise process spectrum. Thus R (0) = 1 

and Rcs(0) = 0. 

Using the same approach as in the preceding section, we write 

for the array sums 

E(ny - E(ny - cf . j   j   WAPclMlI] (A-8) 

■ 

i 

E(nlcnls) - E(n2cn2s) = 0 (A-9) 

M     2M 
v r 

E(nlcn2c) = E(nlsn2s) = po^ = ^ ^ rkmsksmRc[(m-k)T]      (A"10) 

M     2M 
E(nlcn2s) = -E(nlsn2c) = vofz - ^ ^/kmWcs1^^71    (A-ll) 

2M  2M 
E(n| ) = E(n| ) - o| -  I   I     r s.smRc[(m-k)T]      (A-12) 

dc dS L     k=M+l rn=M+l Km K m c 

A.2     EFFECT OF NOISE PROPr! :TIE$ ON ARRAY SUM COVARIANCES 

The following is simply a compilation of certain noise proper- 

ties, so far not specified, and their consequences for the array sum 

noise parameters we have just related to the input process: o,, a2, p, r. 

A-3 
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Narrowband noise with a spectrum even about the center frequency 

For this case R_C(T) = 0, and R(T) = R_(T) COS WT, SO that r=0. 

Uniform variance across array, correlation proportional to distance 

Here sk = s, all k, and r. = f(|m-k|), so that a, = a«. 

White noise 

We have RCS(T) = 0, RC(T) = ö(T), S^ 
+hat p = r = 0. 

Spatially independent noise 

If rkm = 6km' then P = r = 0- 

(Note the duality between spatial properties and spectral properties.) 

A.3     FURTHER MODELING OF THE SYMMETRIC NOISE COVARIANCE MATRIX 

When the noise across the array is symmetric and either white 

noise or spatially independent, we have a2 = a2, = a2 = Ms2 and p = 0. 

But we should like to be a bit more general than that. The following 

artifices are developed to provide an alternative to the white noise 

assumption. 

A.3.1   ADJACENT CORRELATION ONLY 

If we say that only the adjacent noise inputs are correlated 

with one another, with correlation coefficient a, it is easy to perform 

the summations of A.1.1 to find 

o2 = Ms2 + 2(M-l)as2, pa2 = as2, a<l. (A-13) 

A.3.2   EXPONENTIALLY DECREASING CORRELATION 

If we say that the correlation coefficient between hydrophones 

m and n is an exponentially decreasing function of the distance between 

A-4 
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them, that is r R[(m-n)T] = e" lm"nl we have probably a more useful 
mn 

representation. For small numbers of hydrophones the calculation is 

simple. For examples: 

M = 1: o2 = s ,  = e"b 

M = 2: o2 = 2s2(l + e"b), pa2 = s2(e"b + 2e"2b + e'3b) 

M = 3: a2 = s2(3 + 4e"b + 2e"2b), 

pa2 = s2(e"b + 2e"2b + 3e"3b + 2e"4b + e"5b), 

It is apparent that for large M or for a general expression, unless 

terms are discarded (effectively what is done in the tridiagonal case) 

then our effort to achieve a closed expression is defeated. A way 

around this obJtacle is to mode
-! the sums of offdiagonal terms as inte- 

grals, asserting that the sum is proportional to area of an appropriately 

chosen region under the curve exp(-b|x-y|). In this fashion we have 

j2 = Ms2 + 2M(M-l)s2 f   dx JX dy e'
b(x"y) * Ms2 + 2K{M-l)s2 \~—-1 

pa2 = M2s2 f  dx f  dy e^^"^ = M2s2e"b (l=|^) • 

Thus for b going to infinity, we have a2 =  Ms2 and p = 0, while for b 

going to zero, we have a2 = po2 = M2s2. 

b2 

(A-14) 

(A-15) 
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APPENDIX B 

ANOTHER FORM FOR THE PROBABILITY DENSITY FUNCTION 

The case we are considering is that in which the cross- 

correlation coefficient r = 0 and a, = o2 H* =0), so that the term 

X in (2-21) equals zero. Under these conditions, the sum and difference 

envelopes Z, and Z2 are statistically independent, since we may factor 

their joint probability density function (2-14): 

P4(zrz2) - H.»(- ??)..(¥) I ■■■(• W ..(t) 
2Z 

1        2 4: z-2h3 
2Z, 

5J8 2'2h4 (B-l) 

where o2 = Ia2(i+P), a2 = J.a2f|-P), h2 = S2/2c2 = (h^h2-^.^ cos 2e)/2(l+p), 

and h| = S|/2a| = (h|+h|-2h1h2 cos 2e)/2(l-p). x2(x;2,a2) is the noncentral 

chi-square distribution with two degrees of freedom and noncentrality 

parameter a2. Thus the filter output y = 2 Ui-Z
2,) is the difference 

between two scaled, independent noncentral chi-square random variables. 

This type of relationship was noted also by Lee [16] in a similar appli- 

cation. 

The noncentral chi-square distribution has many forms and 

interpretations (see [17-20]). For example, we may write 

(i a2)r 1 X2(x; 2, a2) = exp(- i a2) J 
r=0 r! x2(x; 2+2r), (B-2) 

where x2(x; n) is the (central) chi-square distribution with n degrees 

of freedom: 

X2(x; n) » 1 e" *x(x/2)*n_1 [r(n/2)]_1 (B-3) 

B-l 
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B.l Density for y using characteristic function 

Using an expression given by Jayachandran and Barr [21], 

we may write the characteristic function of the distribution of y as 

ry, 
, ,'  • -   ^)m   (hi) ♦y(t) = exp C-(h|+h|)3 Jn   ln   -^ jf 

m=0 n=0 

1 2 '  k=0  n   (l-ia|t)k+1    Z r^O  m 

x - 
[\ (UP)] n-r 

(l+iajt) r+1 
(B-4) 

Thus we obtain for the density of y 

2nn 

P6(y) - £ exp Hh>J)] 2   a     3     J *" 
m=0 n=0 n< 

?Ck"¥'"k x'Ufej »*♦*].' * ° 
m 
I 

k=0 

\ 

j rn-r)(Ua,- xl|"_^ ; 2 ♦ 2r], y < 0 

Defining the polynomials G"(X) =   \ (m+"'k) h- , we obtain finally 
m k=0     n       K. 

(B-5) 

2nm 2in 

P6(y) = £ exp [-(h|+h|)3   I     I 
n=0 m=0 

[id-pjhj]"   [*0*)hj] 
m! n! 

°rt^)*:i^Tji-y>-<> 

«rt^Kt^TferJ'"0 

B-2 

(B-6) 
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i B.2   The polynomials GJj(x) 

We list here several of the properties of these polynomials. 

Ü *"«•««: «J« S joC
k) £ ;   sj(x> • em(x),   SJ . 1. (B-7) 

'I Iterative relationships: G"(x) =£,- +   Y   fiT,(x) = G" ,(X) + G^fx) (B-81 
111 III« Ä 111        I II«        I •■■• r-u 

*lso' <M " 1   © CTkW - 1    ?) «f'W ■ I   <!> Gm-K<x> (B-9) 
ks:0

(m,n>p) k=0(n>m) k"°(m>n) 

Differentiation formula:   $-j G[J(X) = GJJ_k(x) (B-10) 

n m      xM       n 
Addition formula: G„(x+y) = t {TG" (x) (B-ll) 

Relationships with special functions: 

The polynomials GJJ(x) may be related to the confluent hyper- 

geometric functions ¥(ct, ß; x) and 2F0(Y. 6; ; -1/x), to the Laguerre 

polynomials L^J(x), and to the Whittaker functions W. (x) by the 
Afp 

following formulae. 

Gm(x) "sf^-in, -ffl-n; x) (B-12) mx   m! 

m+n+1 
-j— T(n+], m+n+2; x) (B-13) 

x 

m> 

m 
s^r2Fo(-m, n+1; ; -1/x) (B-14) m! 

mf e  x wb,a+l(x} for a " T"* b s — (B-15) 

. (.1}niL-m-n-l(x) (B.16) 

By using the identity (B-15), our expression (B-6) for the pdf can be 

shown to be identical to that in [63, p. 63, eq. 28]. 

B-3 
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B.3 Equivalence of forms 

We now show that the form we have just derived for the 

probability density function is equivalent tc that of (2-23) under the 

assumed conditions 

jn. n 

m=0 n=0 

.km, n r  r a b rn# > „ r  r  c *m+n-k* x a b 

m+nA xkanV r  r  r  /m+n\  x a  D 

m=
Z0 n=0 k^O { n ' k^kTTTT! 

2m 

= I    fy      lm  (2^)^,(1+1,1; b) 
m=0 *   m    ' ' 

in «   2m 

m=0 

using Kummer's transformation on the last step. 

(B-17) 
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APPENDIX C 

INVERSION OF THE DIRECTIVITY FUNCTION 

The directivity function, as it has been defined in Chapter 1, 1s 

D = b(l; N) = sinN0/Nsinl 

■ | [cosrf + cos30 + cos50 +...+ cos(N-l)tf], N even        (C-l) 

* I [1 + 2cos2tf + 2cos4d +...+ 2cos(N-l)rf], N odd. (C-2) 

In this appendix we derive an inversion of D, that is, in a way to 

express 0 = d(D; N). 

Recalling that cosnx = 1 - ^- + ^- - ...+... 

= 1 - (nx)2/2, (nx)2 « 12, (C-3) 

we may write for D, N even, 

D = | [1 - (5/2 + 1 - 9(52/2 + 1 - 25|52/2 +...+ 1 - (N-l)V/2] 

=iii-4[i2+32+52+---+(N-i)2]i 
= 1 - (N2-l)02/6,       [(N-l)tf]2 « 12 (C-4) 

where we have used Gradshteyn and Ryzhik [13]. formula 0.122.2. For N 

odd, we obtain 

D = Tj. [i + 2 - 402 + 2 - 1Ö02 + 2 - 36tf2 +...+ 2 - (N-l)V] 

s J(N - W2 [I2 + 22 + 32 +...+ (N-l)2/4]| 

* 1 - (N2-l)tf2/6 (C-5) 

C-l 
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„. 

where once again we have used [13], formula 0.121.2. Therefore, for N odd 

or even we can write 

£ * 6(1-D)/(NZ-1). 

If we use the first three terms of the cosine power series 

representation, we obtain 

D « 1 - (N2-1)rf2/6 + ^ [l4 + 34 + 54 +...+ (N-1)4] 

» 1 - (N2-l)02/6 + (3N4-10N2+7)tf4/360, [{N-l)£j2 « 30. 

(C-6) 

(C-7) 

Application to Chapter 4. 

In Chapter 4, we use 0 = ßsina/2. Therefore we have the approximation 

ß2sin2a/4 = 6(1-D)/(N2-1) 

s ■ 
= ß2(l-cos2a)/2 

• * .    2   £(1-D) or   a = arcsin fl   -*—*- j arccos 1 - 48(1-D). 

(C-8) 

2 
, (3gl ßsina) «12 

(C-9) 
32(N2-1) 

C-2 

■  '     jjsaia^-.-. : .^ifl 



11 
D 

APPENDIX D 

COMPUTER PROGRAMS 

I D 
fl 

n 
! i 

It is not our purpose here to burden the reader with a full 

disclosure of the many numerical procedures we have employed. We shall 

list, however, for the benefit of those who can interpret them, the 

major computer programs we have written, so that they may be open to 

scrutiny and available to those who may wish to perform similar calcu- 

lations. 

The programs are all straightforwardly written in the BASIC 

language. Those programs listed are labeled as follows: 

(1) basic multiplicative probability density function (2-26) 

(2) basic noncentral chi-square probability density function (2-25) 

(3) multiplicative array detection analysis (3-2, 3-10) 

(4) standard array detection analysis (3-5, 3-13) 

(5) multiplicative array estimator mean and mean square (4-69, 4-70) 

(6) standard array estimator mean and mean square (4-53, 4-54) 

(7) multiplicative array estimator bound (5-48) 

(8) standard array estimator bound (5-38). 

Some manual calculations were employed to supplement programs 5 and 7, 

using [31]. 

D-l 
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ü PROGRAM ONE 

; | 

ii 

i 5 

1 
5 
10 
15 
20 
25 
98 
99 
100 
200 
205 
210 
215 
220 
305 
310 
315 
320 
325 
330 
335 
400 
k05 
MO 
M5 
498 
500 
505 
510 
515 
520 
525 
530 
5**o 
542 
5*5 
599 
600 
60«5 
610 
615 
620 
625 
630 
635 
700 
705 
710 
715 
720 
725 

REM BASIC PR0GRAM F0R P6(Y) 
DIMG(100,100),H(100),J(100),U(100) 
LET G(0.0)-1 
1ET H(0)-1 
LET J(0)-1 
LET U(0)«1 
REM LINES 100 T0 3351 ENTER RH0, SIGMA 2, ?0WER SNR, AND THBTA| 
REM COMPUTE CONSTANTS. 
READ RfS,H,T 
PRINT " PROBABILITY DENSITY FUNCTI$P 
PRINT 
PRINT "RH0«,,R, MSIG2-"S, MPSNR-,,Ht"THETA-"T 
PRINT 
PRINT "YVP6(Y)W 

LET Cl-2*H*(l-R*e0S(2*T))/(l-Rt2) 
LET C2-H*(60S(T))t2 
LET C3=H*(SIN(T))t2 
LET C^-(l-R)/(l+R) 
LET C5—2/(S*(l+R)) 
LET C6-Z/(P*(l-R)) 
LET C?-4/(S*(l~R12)) 
READ A1,A2,A3,L 
F0R Y-=A1 T0 A2 STEP A3 
LET Yi=C?*ABS(Y) 
LET P-0 
REM LINES 500 ti 5^5* CALCULATE THE POLYNOMIALS G(YJK,N). 
•F0R N=l T0 L 
LET G(0,N)=1 
LEI* H(N)«C3*H(N-1)/N 
F0R K«=l T0 L 
LET U(K)=Y1*U(K-1)/K 
LET C(KfO)=G(K-l,0) + U(K) 
LET C(KfN)=G(K-lfN) + G(K,N-l) 
LET J(K)=C2*J(K-1)/K 
NEXT K 
NEXT N 
REM LINES 600 T0 725? COMPUTE DENSITY FUNCTI0N. 
IP Y<0 THEN 700 
F0R N=0 T0 L 
F0R K=0 T0 L 
LET P=P +(C4I(K-N))*J(K)*H(N)*G(K,N) 
NEXT K 
NEXT N 
LET P=P*EXP(C5*Y-C1)/S 
G0 TO 800 
F0R N-0 TO I 
F0R K=0 TP L 
LET P-P + (CM(K-N))*J(K)*H(N)*G(N,K) 
NEXT K 
NEXT N 
LET P*P*EXP(C6*Y-C1)/S 

D-2 
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800 PRINT Y.P 
805 NEXT Y 
1020 DATA .2,1,1,0 
10W DATA -7.5,7.5,.5 
10W DATA 30 
2000 END 

PROGRAM TWO 

5 READ A1,A2,A3 
10 READ H,S 
15 PRINT "YVPOO" 
20 F0R Y«=A1 T0 A2 STEP A3 
25 LET U«2*SQR(H*Y/S) 
30 G#SUB 300 
35 LET P=K*EXP(-H-Y/S)/S 
40 PRINT Y,P 
k$ NEXT Y 
50 DATA 0,10,1 
55 DATA 1,1 
60 ST0P 
300 LET V=.5*U 
305 LET K-l 
310 LET G-l 
315 F0R N-l T0 20 
320 LET G=G*V*2/Nt2 
325 LET K=K + G 
330 NEXT N 
335 RETURN 
500 END 

PRXRAM THREE 

5 DIM F(100),H(100),E(100),U(100),V(100) 
10 LET H(0)-1 
15 LET U(0)-1 
20 LET V(0)=1 
30 LET F(0)=1 
32 READ M,B,A,H1(S1,AU 
35 LET E=.5*M*B*SIN(A) 
kO LET D=SIN(E)/(M*SIN(E/M)) 
45 LET H=Hl*(N*D)1-2/(M + 2*(M-l)*A4) 
50 LET R=AV(M + 2*(M-1)*A^) 
55 LET S*M*S1 + 2*(K-l)*A^*Sl 
60 LET T-E 
65 PRINT "        MULTIPLICATIVE ARRAY DETECTION ANALYSIS" 
70 PRINT 
75 PRINT •,M-"M}"BETA="Bj"ALFA«"A{ "CORREL="AU 
80 PRINT "INPUT SNR="H1{"S1-"S1 
85 PRINT "RH0«"Rj"SIGt2="Sj"SNR-"H;MTHILTA="T 
90 PRINT 
95 READ L 
105 READ A1,A2,A3 
HO PRIN1 "r,"PD","?F" 

T 
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115 LET Cl-H*(C0S(T))t2 
120 LET C2-H*(SIN(T))t2 
123 LET 63-(l-R)/(l+R) 
130 LET C4-2/(l-R) 
135 F0R Y-Al T0 A2 STEP A3 

Ü        140 LET C5"2*Y/(S*(1+R)) 
145 LET Pl-0 
150 F0R N=0 T0 1 

I ii        155 LET U(N+1)=<2*U(N)/(N+1) 
160 F0R M=0 T0 L 
165 LET V(M+1)=C1*V(M)/(M+1) 
170 F0R K-0 T0 M 
175 LET F(K4i)=F(K)*(N+K+i)/(K+l) 
180 LET ECK-IC)-© 
185 F0R J=0 T0 M-K 
190 LET H(J+1)=C5*H(J)/(J+1) 
195 LET E(M-K)=E(M-K) + H(j) 
200 NEXT J 
205 LET P2=U(N)*V(M)*(C31(M-N)) 
210 LET P3=F(K)*(C4t(K-K))*E(M-K) 
215 LET Pi=Pl + P2*P3 

__    220 NEXT K 
225 NEXT M 
230 NEXT N 
235 LET P4—C5-2*H*(l-R*C0S(2*T))/(l-Rt2) 
240 LET P5=.5*(1+R)*EXP(P4)*P1 
245 LET P6=.5*(t+R)*EXP(-C5) 
250 PRINT Y,P5,P6 
255 NEXT Y 
260 DATA 5,3.14159,.00001 
265 DATA 1,1,0 
270 DATA 30 
275 DATA 0,70,5 
280 END 

PROGRAM FOUR 

5 DIM U(200),H(200),E(200) 
10 LET U(0)=1 
15 LET H(0)=1 
20 READ N,B1,A5,S1,H1,A4,L,K2,L1 
25 PRINT " STANDARD ARRAY DETECTI0N ANALYSIS" 
30 PRINT 
35 LET T=.5*N*B1*SIN(A5) 
40 LET D=5IN(T)/(N*SIN(T/N)) 
45 LET S=N*S1 + 2*(N-l)*A4*Sl 
50 LET H=Hl*(N*D)t2/(N + 2*(N-i)*A4) 
55 PRINT ,,N="N;"BETA="Bir,ALPHA="A5 
60 PRINT HS1-MS1,"H1=,,R1,"A«,,A4 
65 PRINT "S-"S,"H="HI"THETA='

,,T 
66 PRINT uL^Lt"^2="K2,"Ll^,Ll 

.67 PRINT 
68 PRINT ,,Y,,,,,PD",,,PF,, 

69 READ A1,A2,A3 
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70 F0R Y2-A1 T0 A2 FfEP A3 
75 LET Y1-Y2/S 
80 LET A-5QR(2*H) 
85 LET B-SQR(2*Yl) 
140 IF (A+B)<20 THEN 200 
145 LET Kl»(A+B-20)/(K2+l) 
150 LET A-A-Kl 
155 LET B=B«K1*K2 
200 IF A>B THEN 220 
205 LET X=.5*At2 
210 LET Y=.5*Bt2 
215 G0 T0 300 
220 LET X-.5*Bt2 
225 LET Y=.5*At2 
300 LET Ql-0 
305 F0R M«=0 T0 L 
310 LET U(M+1)=Y*U(M)/(M+1) 
315 LET E(H)=0 
320 F0R K=0 T0 M 
325 LET H(K+l)=X*H(K)/(K+l) 
330 LET E(M)=£(M) + H(K) 
335 NEXT K 
340 LET Q1*=Q1 + U(M)*E(M) 
3^5 NEXT M 
350 LET Q2«Q1*EXP(~X-Y) 
405 IF A<B THEN 416 
410 LET Q=^2 
415 G0 T0 125 
416 G0SUB 550 
420 LET Q=l - Q2 + X*EXP(-X-Y) 
425 LET Pl=EXP(-Yl) 
430 PRINT Y2,Q,P1 
431 NEXT Y2 
480 DATA 4,3.14159,.00001 
481 DATA 1,1,0 
498 DATA 120,.93,30 
500 DATA 0,50,5 
545 ST0P 
550 LET V=.5*A*B 
555 LET K-l 
560 LET G-l 
565 F0R N=l T0 LI 
570 LET G«G*Vt2/Nt2 
575 LET K=K + G 
580 NEXT N 
585 RETURN 
600 END 

PROGRAM FIVE 

5 DIM U(94,94),L(94,94),E(9^),G(94) 
,10 LKT U(0,0)-1 
15 LET L(0,0)=1 
20 LET B(0)=4/15 
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25 LET B(l)-32/315 
30 LET C(0)-l/6 
35 LET C(l)-l/20 
kO READ M,B,H1,N2 
50 F0R R-l T0 N2 
55 LET B(R+1)«2*(R+1)*(2*R+3)*B(R)/((2*R+3.5)*(2*R44.5)) 
60 LET C(R+l)»(R+l)*(2*R+3)*C(R)/((R+2)*(2*R+5)) 
65 NEXT R 
100 LET K=2*SQR(6/(4*MI2-1))/B 
105 PRINT K 
110 LET K1=M*H1 
115 F0R A=,00001 T0 .21 STEP .01 
120 LET E«.5*M*B*SIN(A) 
125 LET D=SIN(E)/(M*SIN(E/M)) 
130 LET L=SQR(l+4*Kl*Dt2) 
135 LET G».25 + 2*Kl*Dt2*(SIN(E))t2 
140 LET G1=SQR(G) 
145 LET A9=G*Lt2 
150 LET B9=-2*K1 
155 LET C9-*5*Lt2 
160 LET L(l,0)=-~1-C9 
I65 LET L(2,0)=l-2*C9+.5*C9t2 
170 F0R R=0 T0 N2 
180 LET U(R+1.0)=B9*U(R.0)/(R+1) 
190 LET U(R,l)=A9*U(R,0)/(R+l) 
200 F0R S=l T0 H2 
210 LET U(R+1,S)=B9*U(R,S)/(R+S+1) 
220 LET U(R,S+i}=A9*U(R,S)/((R+S+l)*(S+l)) 
230 LET L(S+ltR)=((2*S+R+l-C9)*L(S,fi)-(R4S)*L(S-l.R))/(S+l) 
240 NEXT S 
250 LET L(0,R+1)=((R+1)*L(0,R)-L(1,R))/C9 
260 LET L(1,R+1)=((R+2)*L(1,R)-2*L(2,R))/C9 
270 NEXT R 
300 LET Ml =0 
305 LET M2=0 
310 F0R R=0 T0 N2 
315 F0R S=0 T0 N2 
320 LET HI»Ml + U(R,S)*L(R,S)*B(R) 
325 LET M2=M2 + U(R,S)*L(R,S)*C(R) 
330 NEXT S 
335 NEXT R 
340 LET M1=M1*4*K*K1*EXP(-C9-2*G) 
3^5 LET M2=M2*4*Kt2*Kl*EXP(-C9-2*G) 
350 PRINT A,Ml,M2,Lf2*Gl 
355 NEXT A 
400 DATA 5,3.14159,4,93 
415 END 

PROGRAM SIX 

5 DIM U(100),B(100),L(100),C(100) 
10 LET U(OM 
15 LET B(0)=4/l5 
20 LET B(l)=32/315 
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25 LET L(0)-1 
30 LET C(0)«l/6 
35 LET C(l)-l/20 
40 READ N,B,H1.N2 
4$ LET K-2*SQR(6/(N*2-1))/B 
•5Ü LET K1«N*H1 
52 LET U(l) —Kl 
55 F0R A-.00001 T0 .21 STEP .01 
60 LET E».5*N*B*SIN(A) 
65 LET D-S1N(E)/(N*SIN(E/N)) 
70 LET H=N*H1*D*2 
75 LET L(l)=l-H 
80 LET M1=B(0) 
85 LET M2=C(0) 
90 F0R Nl-1 T0 N2 
100 LET U(NI+0—KI*U(NI)/(NI+I) 
102 LET B(N1+1)=2*(N1+1)*(2*N1+3)*B(N1)/((2*K1+3.5)J'(2*N144.5)) 
105 LET C(Nl+l)=(Nl+n*(2*Nl+3)*C(Kl)/((Nl+2)*(2*Nl+5)) 
110 LET L(N1+1)=((2*N1+1-H)*L(N1)-N1*L(N1-1))/(N1+1) 
115 LET Ml=f^l + U(N1)*L(N1)*B(N1) 
120 LET M2«*I2 + U(N1)*L(N1)*C(N1) 
121 NEXT HI 
122 LET M1=2*H1*K*K1*EXP(-H) 
123 LET M2=M2*2*K*2*K1*EXP(-H) 
125 LET V1«M2-M1*2 
130 LET V2=M2-2*A*M1+At2 
135 PRINT A,M1,M2,V1.V2 
140 NEXT A 
145 DATA 10,3*^159,4 
150 DATA 99 
200 END 

PROGRAM SEVEN 

5 DIM U(94,94)fL(94,94),B(94) 
10 LET U(0,0)=1 
15 LET L(0,0)=1 
20 LET B(0)=4/15 
25 LET B(i)=32/315 
30 READ M,B,H1,N2 
40 F0R R=l T0 N2 
50 LET B(R+l)=2*(R+l)*(2*a+3)*B(R)/((2*R+3.5)*(2*R44.5)) 
65 NEXT R 
100 LET K=2*SQR(6/Ci*Mt2-l))/B 
105 PRINT K 
110 LET K1=M*H1 
115 F0R A=.00001 T0 .21 STEP .01 
120 LET E=.5*M*B*SIN(A) 
125 LET D=SIN(E)/(M«SIN(E/M)) 
130 LET L-SQR(l+4*Kl*Dt2) 
135 LET G-.25 + 2*Kl*Dt2*(SIN(E))t2 
140 LET Gl-SQR(G) 
145 LET A9=G*LT2 
150 LET B9«=-2*K1 
155 LET C9-.5*Lt2 
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160 LET L(l,0)-2-C9 
165 LET L(2,0)-3-3*C9+.5*C9t2 
200 P0R R-0 T0 N2 
215 LET U(R+1.0)-B9*U(R,0)/(R+1) 
220 LET U(R,1)-A9*U(R,0)/(R+1) 
225 F0R S-i T0 N2 
230 LET U(R+1,S)=B9*U(R,S)/(R4S+1) 
235 LET U(RfS+l)=A9*U(R,S)/((R4S+l)*(ü+l)) 
240 LET L(S+l,R)=((2»S+R+2"C9)*L(SiR)-(R4S+l)*L(S-lfR))/(S+l") 
245 NEXT S 
246 LET L(0,R+lM(R+2)*L(0,R)-L(ltR))/C9 
247 LET L(l,R+l)=((R+3)*L(lfR)-2*L(2,R))/C9 
250 NEXT R 
300 LET Ml-0 
310 F0R R=0 T0 N2 
315 FpR S=0 T0 N2 
320 LET M1=M1 + U(R,S)*L(R,S)*B(R)*(R4S+l-2*G)/(R-tS+l) 
330 NEXT S 
335 NEXT R 
340 LET Ml^lf2*Kt2*8*Klt2*L'T2*EX?(-Lt2-4*G)/(Lt2-l) 
350 PRINT A,M1,L,2*G1 
355 NEXT A 
1*00 DATA 5.3.1^159,2,60 
415 END 

PROGRAM EIGHT 

5 DIM U(100),B(100),L(100) 
10 LET U(0)«i 
15 LET B(0)=4/15 
20 LET B(I)=32/315 
25 LET L(0)»1 
40 READ N,B,H1,N2 
45 LET K=2*SQR(6/(Nf2-l))/B 
50 LET K1-N*H1 
5? LET ü(l)=-Kl 
55 P0R A=.00001 T0 .21 STEP .01 
60 LET E=.5*N*B*SIN(A) 
65 LET D=SIN(E)/(N*SIN(E/N)) 
70 LET H=N*Hl*m2 
75 LET L(l)=2-H 
80 LET M1=B(0) 
90 F#R Nl=l T0 N2 
95 LET U(N1+1)=-K1*U(N1)/(N1+1) 
100 LET B(N1+1)=2*(N1+1)*(2*N1+3)*B(N1)/((2*N1+3.5)*(2*N144.5)) 
110 LET L(Nl+l)-(2-H/(Nl+l))*L(Nl)-L(Nl-l) 
115 LET Ml-Ml + U(N1)*L(N1)*B(N1) 
121 NEXT Nl 
122 LET Mi=2*Ml*K*Ktt2*D*EXP(-H) 
130 LET Ml=Mlt2/(2*N*Hl*(2*H-l)) 
135 PRINT A,Ml 

''140 NEXT A 
145 DATA 10,3.14159,.5,99 
200 END 
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ABSTRACT 

Analysis is made of a "multiplicative" receiv- 
ing array model which is known to have about one- 
half the beamwidth of the "additive" or convention- 
al (square-law) array with the same number of ele- 
ments. The probability density functions for the 
filter outputs of array models an- shown for mono- 
chromatic, planewave signals in the presence of 
narrowband Gaussian noise, for broadside arrays 
with equal spacing and uniform gains. The number 
of elements, SNR, source bearing, and interelement 
noise correlation are treated as parameters of the 

distribution, and their influences are displayed 
graphically. 

Based on these probability density functions 
for the square-law and the multiplicative array 
processors, we then examine their performances as 
signal detectors and as bearing estimators. 

INTRODUCTION 

In judging the capabilities of sonar array 
processing, it is a coraion practice to use the 
processor output SNR (signal-to-noise ratio) as a 
figure of merit for detection, and the array con- 
figuration's beamwidth as a measure of bearing es- 
timation performance. Thus, based on these cri- 
teria Arndt[l], for example, concludes tnat con- 
ventional or additive processing is the best method 
for detection purposes, while correlating or 
multiplicative processing is the choice for obtain- 
ing bearing. These conclus ns had also been 
reached by Welsby and Tucker [2] with some reserva- 
tions. However, we wish to point out that these 
criteria, SNR and beamwidth. while often adequate 
for pursuing the optimization of a given configura- 
tion [3], are not always suitable for motivating a 
choice between two different configurations. 

The usual standard of detection performance is 
the probability of detection (PD) achieved for a 
given false alarm rate (PFA) at an assumed system 
input SNR (Neyman-Pearson model of detection). 
Therefore, even though it is reasonable to assume 
that the PD is proportional to output SNR for each 
of two different systems, in general one cannot say 
that the PD's are coirparable if the SNR is the same 
since there is yet another parameter to be speci- 

fied: the detection threshold, or equivalently the 
the false alarm rate on which the threshold is 
based. 

Similarly, while beamwith (resolution;is cer- 
tainly a factor, bearing estimation performance is 
to be understood in terms of minimum error attain- 
able from an arrangement in which the bearing is 
extracted, or indirectly measured, from observa- 
tions corrupted by noise. Therefore, a true com- 
parison of two configurations with respect to bear- 
ing estimation requires an accounting of the effi- 
ciency with which each smooths the noise. 

The limitations we have pointed out are, of 
course, more or less understood by those employing 
the conventional figures of merit. The limitations 
are tolerated because of the difficulty in obtain- 
ing the precise quantities on which systems com- 
parisons need to be based, quantities which are re- 
lated to the statistical behavior of the system 
outputs. In this paper we oresent the probability 
density function of the detector output for a class 
of multiplicative arrays, and employ it to calcu- 
late detection and bearing estimation capabilities 
of these arrays in comparison with conventional or 
additive arrays which use a square-law detector. 
Though necessarily we select a narrow class of sys- 
tems in order to achieve the rigor we seek, both 
the analytical approach and the results (described 
mere fully in [4]) lend themselves to extensions, 
thereby encouraging more thorough system analysis 
in the field of sonar arrays. 

MULTIPLICATIVE ARRAY PROBABILITY DENSITY FUNCTION 

Consider the model of a multiplicative array 
as shown in Figure 1, in which the 2M omnidirec- 
tional receiving elements are equally spaced d 
units apart alc.ig a straight line. The sum of one 
half of the array element outputs is multiplied by 
that of the other half, and the product is lowpass 
filtered. We make the following assumptions: 

SIGNAL: the array intersects a planewave, 
monochromatic signal with known amplitude A and un- 
known bearing a, relative to the peroendicular of 
the array. 

This work was supported in part by the Office of 
Naval Research under Contract N00014-67-A-0377. 
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FIGURE 1. Multiplicative array model. 

NOISE: the array elements experience station- 
zero-mean Gaussian noise such that the vari- 

ance at each element is s2 and, at a given instant 
of time, adjacent elements only are correlated, 
with coefficient a. 

Under these conditions the sum channels of 
Figure 1 have the signal terms 

s^t) « MADMcos(ü>t-9.},       1 = 1,2 

where the directivity function is given by DM « 
s1ntiM0sina)/Msin(iBsina), with ß = 2nd/X     "   and 
26 ■ 61-62 = Mßsina.   The noise terms n.(t) have 
equal variances o2 = Ms2 + 2(M-l)as2 and are cor- 
related with coefficient p = a/[M + 2(M-l)a]. 

The filter output is given by y(t)=KZi2-Z2
2) 

where Zi is the envelope of4(ui + u2) and Z2 is 
the envelope of-j-(ui - u2), assuming ideal lowpass 
filtering.   That is, y is the difference between 
two Independent, scaled noncertral chi-square ran- 
dom variables (for n^ of unequal variance, the Z. 

FIGURE 2, Multiplicative array PDF (equation 1) 
tor input signal-to-noise ratio varied. 

art dependent), it can be shown [4] that the 
probability density function of y in this case is 

PB(y) ■ Pjy. a, B, "1, s, H, a) 

* exp Hs'(B+C) 
™% B-CCOS26 . £&£>* I 

6       B< - C* B B^Tl 

MsHDujCOSÖ B_c.r 
Oa) 

-r^sinje B+c 

B tt §]• y>0 

2y Zm% B-CcosSe 
^ + 

MH2D2cos26B_c 

1HF I( 
* I. 

r«0 

f4HDMs1ne/7 
[' s(B-C) 

MsHDMsin9 B+C>r 

B / 

r-MH2D2cos29B.c] 
B B+CJ 

B+Ü" 

(lb) 

y<0 

where B = a2/Ms2, C = pB, and H2 = A2/2s2, and 
where the I ( ) are the modified Bessel functions 
of the first kind of order r, and the L ( ) are 
the r:th degree Laguerre polynomials. r The un- 
correlated noise case corresponds to B = 1 and 
C = 0. 

Results for the multiplicative array probabil- 
ity density function (1) are presented in Figures 
2 through 5. The nominal case of 2M = 10 elements, 
uncorrelated noise (a=0), unit noise variance (s2 

=1), zero bearing (a=0), ha If-wavelength array 
spacing (B-u), and zero dB input SNR (H2=l) was 
chosen. In Figure 2 the SNR is varied, while the 

FIGURE 3. Multiplicative array PDF (equation 1} 
for number of array elements varied. 
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FIGURE 4. Multiplicative array PDF (equation 1) 
for noise correlation coefficient varied. 

number of elements is varied in Figure 3. It is 
seen that these two parameters have similar ef- 
fects on the distribution. The effect of adjacent 
Interelement correlation is displayed in Figure 4, 

FIGURE 5. Multiplicative array PDF (equation 1) 
lor bearing angle varied. 

FIGURE 6. Square-law array model. 

showing how increased correlation increases the 
variance of the filter output, and decreases the 
value of y at which the peak cf the distribution 
occurs. Figure 5 demonstrates a phenomenon of 
interest, for the bearing is seen to act as a lo- 
cation parameter for the distribution, indicating 
the potential of using the filter output for 
bearing estimation. 

SQUARE-LAW ARRAY PROBABILITY DENSITY FUNCTION 

Consider the conventional or square-law array 
with N elements, as modelled in Figure 6.    Using 
the same basic assumptions as above, it can be 
shown that the filter output y is a scaled noncen- 
tral chi-square random variable with probability 
density function 

Ps(y) = Ps(y» a, M, s, H, a) 
FIGURE 7. Square-law array PDF (equation 2) 

for input signal-to-noise ratio varied. 
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or p$(y)- 
1 

rCP^P FÜs 
(y+N'H'D's2) 

TR? I. 
'2HD../y 

W 
(Z) 

, y>o 

■ 0, y<0 

where B' « [N + 2(N-l)a]/N 

and DN * s1n(iNßsino)/Ns1n(Jßsina). 

In Figures 7 and 8, the probability density func- 
tion of the filter output of the square-law array 
model is seen to behave with parameter variation 
In much the same way as that of the multiplicative. 
Here we have used H2= 1, s2= 1. 8 - ». o = 0,a=0, 
and N * 10 as the nominal case.    In Figure 7 the 
SNR is varied, and in Figure 8 the source bearing 
Is varied. 

DETECTION PERFORMANCE 

Having now the probability density functions 
for the array processor outputs, we are in a posi- 
tion to evaluate what Tucker [5] described as 
"...the difficult question of whether the better 
signal/noise performance...is really indicative of 
a higher probability of detection." That is, we 
are able directly to calculate the probabilities 
of detection for the two array models, as functions 
of SNR and of corresponding probabilities of 
false alarm. 

Assuming the decision "signal present" is 
made if the filter output y exceeds a threshold T, 
the probability of false alarm or false alarm rate 
and the probability of detection are given by 

PFA =/ p(y|h=0)dy, PD =/°p(y|H>0)dy.  (3) 

For the multiplicative array model we have (T>0) 

(4) PFA - *{1 + C/B) expkpffcjjj.] 

PD = TF w\mk el 
2MH2

n2B-Ccps2 
B •Of A ¥ 

2m, 
C 

\2n 

*1 
I   yÄapicosSl^isjnei2"       . . 
ÄÄftVT'W        m! n! <5' m=0 n=0 

/m+n-k\/2B_f    [    2r 
I    n    A'B-C/ ekllV(B+C) 

For the square-law array model we have 

PFA = exp(-T/3'Ns2) (S) 
17) and PD = Q(HDN/2r:/B', /ZT/BW), 

where Q is Marcum's q-function. 

It can be shown that the multiplicative model 
has a more desirable false alarm rate for the same 
value of detection threshold, while the sjuare-law 
model yields a higher PD.    However,  this aDparent 
tradeoff is blurred by the unsuitabi1ity of the 
detection threshold value as a basis for compari- 
son.    The more informative "receiver operating 
characteristics"  (ROC), given by PD = ffPFA; SNR), 
render two different threshold detectors more di- 
rectly comparable, enabling a performance index 
such as "minimum detectable signal" (the SNR re- 
quired to ins.-re a given PD for a specified 

i .•!• 

^^^^* -»-.1 
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FIGURE 8. Square-law array PDF  (equation 2) 
for the bearing angle varied. 

maximum PFA) to be used to pronounce one the better 
detector with some confidence in the generality of 
this kind of statement. Helmstrom [6] cites addi- 
tional uses of the ROC. 

ROC curves for our two models, for the uncor- 
related, boresight (a=0) case are given in Figure 
9 for N=2M=4 and in Figure 10 for N^M=10. The 
fact that the square-law array processor curves 
are consistently above those of the multiplicative 
indicates that the square-law array model is a 
better detector in this case. They are quite 
close together, however, and whereas Arndt [1] 
gives an SNR difference of 3 dB, cur results imply 
that the minimum detectable signals do not differ 
by more than one dB. 

MAXIMUM LIKELIHOOD BEARING ESTIMATES 

If the filter output y of the multiplicative 
array model is to be operated upon to obtain an 
estimate of the bearing a, it is shown in [4] for 
uncorrelated noise the maximum likelihood bearing 
estimator has the approximate forms 

«M * iarccos[l - 3*^(1 - £)\>  1OW S™ 
. \°) 

;(y)=Wos[i-^^^^+Jh,s(9) 
Also, the corresponding forms for the square-law 
model are 

r[' - Txh?"C-m\ a(y) = *arccos|l - ^r^fl. - TbWr 

I  low SNR (10) 

a(y) = arcsinlYfjT^fl - $L). hi;h SNR. (11) 

In [4] the mean vwues of these estimators for 
high SNR and for N = 2M are calculated to be 

E(o) * 2kKe" ^B(i,2m+2)Lm(h2; (12) 

squar?- law 
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and E(o) » K - KQ(X,2/g) ♦ 2kKexp(-±A2-2g) 

*° "^ multiplicative 

with K * 4.9/ß^FT, k - NH2, h2 - NH2D*/2. 

A* « 1 ♦ 2h2, 4g » A2 - 2h2cos29, and the B( , ) 
are beta ^unctions. 

Computations of these mean values are given in 
Figures 11 and 12, with a straight line represent- 
ing an unbiased estimator drawn in for reference. 
The trend, as the SNR increases, toward unbiased- 
ness—where E(a) = a,—is clearly seen for the 
smaller values of bearing.   On the whole, the two 
estimators appear to behave quite similarly with 
respect to bias. 

BOUNDS ON ESTIMATOR ERROR 

As a means of learning estimator performance 
we have chosen the Cramer-Rao bounds.    Using the 
above expressions for the mean values of the bear- 
ing estimates and working with the filter output 
probability density functions, we may calculate the 
familiar Cramer-Rao bounds on estimator variance: 

Varfc) > [^€(a)]2/E{[3lnP^;a)]2}. (14) 

An example   of this bound for each array model 1s 
given In Figure 13, in which for small bearings the 
square-law array is seen to have a smaller -upper ■**- 
bound on variance.    It should be kept in mind that, 
since there is a bias, the mean square error will 
be greater than the variance.    These curves, as 
well as others we have calculated for actual vari- 
ance and mean square error, show a smaller error 
for the square-law array for small (major lobe) 
bearings, white the fact that the curves cross at 
higher values of bearing seems to imply that there 
are values at which the multiplicative array's 
estimator is superior. 

CONCLUSION 

We have very briefly summarized recent inves- 
tigations which, by direct calculation, demonctrate 
that the actual  relative performances of square-law 
and multiplicative array processors in signal de- 
tection and in bearing estimation can differ sig- 
nificantly from those predicted using the systems' 
SNR and beamwidth as figures of merit. 

Receiver operating characteristics(N*4l 

f 

FIGURE 10. Receiver operating characteristics(N-10) 
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Abstract—The probability density function (pdf) for the output of an 
analog cross-correlator with correlated bandpass inputs is derived. The 
pdf is derived by a "direct method" without resorting to the "charac- 
teristic function method," which usually requires contour integrations in 
a complex plane for inversion operations. The correlator consists of 
bandpass filters, a multiplier, and a zonal low-pass Alter. We treat the 
general situation in which the two inputs are narrow-band signals of 
unequal power and of different phases. The bandpass input noises are 
assumed to be correlated and may have different powers. In the Appendix, 
another derivation for the pdf is given in the special case of equal power 
correlated noise. This derivation is based on the fact that the correlator 
output random variable is the difference of two independent noacentral 
chi-square variables of two degrees of freedom. We show that the two 
expressions for the pdf (one from the direct method and the other from 
the characteristic function method) are indeed equivalent. Finally, we 
discuss two major areas of application. 

I. INTRODUCTION 

THE PROBABILITY density function (pdf) for the 
output of an analog cross-correlator with correlated 

bandpass inputs is derived. The correlator consists cf 
bandpass filters, a multiplier, and a zonal low-pass filter. 
We treat the general situation in which the two inputs arc 
narrow-band signals ol unequal power and of different 
phases. The noises in the input channels arc assumed to be 
correlated with unequal power. 

The problem of obtaining the pdf for the output of a 
cross-correlator w;,h bandpass inputs has been a matter of 
continuing interes» [l]-[7]. To reduce the complexity 
inherent in the mathematical aspects of the problem, 
previous authors have often restricted their considerations 
to certain simplifying assumptions or approximations in 
deriving a general expression for the pdf. However, Andrews 
[5] is an exception; he has obtained a general expression 
of considerable complexity by utilizing the characteristic 
function method. In this paper we show how the pdf can 
be derived in a direct fashion without employing the 
characteristic function method. The resultant expression 
for the pdf appears to be much simpler than that of Andrews. 
In the Appendix, yet another derivation of the pdf for the 
correlator output is given. This derivation is based on the 
fact that the correlator output random variable, manip- 
ulated suitably, is a difference of two independent non- 
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central chi-square variables, each with two degrees of 
freedom. Under this formulation for the output variable, 
the application of the characteristic function method gave 
an easy derivation for the pdf. These findings resulted from 
a study of the detection capabilities of narrowband multi- 
plicative array configurations [8]. 

The "direct approach" we have used to obtain the filter 
output probability density function is by no means the only 
one. Perhaps the most thorough method is that which 
takts into account the filter transfer function of a realizable 
filter and tieats the filter output as a time series. In the 
literature, this approach is often attributed to Kac and 
Siegert [9], and usually is found applied to the square-law 
detector [10]-[12]. An exception is the work of Lampard 
[3], who studies a multiplier/filter combination. 

Other references which use the same '"zonal filter" model 
as we do to analyze the multiplier/filter, though less gener- 
ally, are [1], [2], [4], and [5], A thorough treatment of the 
output SNR of such systems is that of Green [13]. In this 
area, very similar pdf curves were obtained from sometimes 
very dissimilar expressions. 

II. THE CROSS-CORRELATOR AND FORMULATION OF THE 

PROBLEM 

The cross-correlator to be studied is shown in Fig. I. 
The inputs to the multiplier are two narrow-band processes 
ut(t) and Mi(f), and their product ;(/) is passed through a 
zonal lowpass filter to yield the output r(r), as shown. The 
processes i/,(/) and u2(t) are said to con;->,„i of the super- 
position of the deterministic signals .?,(/), .s2(<) and the 
noise processes n^t), n2(t), respectively. At the same in- 
stant of time. /!,(/) and n2it) arc assumed to be jointly 
Gaussian random variables with variances rr,2 and a2

2, 
correlation coefficient /;, and zero means. 

The multiplier is assumed to be instantaneous, so that its 
output can be written 

:(t) = «,(?) x u2(t) 

=   f.s,(0  4-  /!,(/)]   X   [,V,(0  + /!,(,)] 

= i[u,(0 -f u2(t)Y - l[//,(f) - w:(/)]
2 

EE   [.V,(,)   +    ,h(t)Y   -   [.V4(0   +   >U(t)Y (I) 

and 
n}A(t) = l[n,(r) ± n2(t)]. 

(la) 

(lb) 

This arrangement may be recognized as the old "quarter- 
square multiplier" idea used in analog computation. 
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INPUT   1 
BANDPASS 

FILTER 

u,(t) ■ «,|t) ♦ 0,(1) 

"      ~l 

/0\ "*'. ZONAL 
LOWPASS 
FILTER Vy 

INPUT   2 
* BANDPASS 

FILTER 
t^(t> ■ •,<!) ♦ 11,(0 

y(t) 

Fig. 1.    Block diagram of cross-correlator. 

For the new variables we have defined, we have the 
following moments: 

£(«,) = 0 

£(«*) = 0 (2a) 

Ein,2) A a3
2 = H*,2 + 2pata2 + a2

2) 

L\nA
2) A o-4

2 = i(o-,2 - 2pa{a2 + a2
2) 

E(n3n4) A Ra3a4 = \(a2 - a,2). (2b) 

Note that if o-, = a2, then R = 0; that is, n3 and re4 are 
uncorrelated. 

Specialization to what we are calling the narrow-band case 
consists in the conventional assumption that the following 
quadrature representations apply: 

s3{t) = S3(t) cos [at - 0,(1)] 

s*(t) = 54(/) cos [wt - 04(t)] 

n3(t) = n3c(t) cos wt + n3s(t) sin wt 

= N3(t) cos [wt - 03(O] 

n4{t) — n4c(t) cos wt + n4s(t) sin wt 

= N4(t) cos [öf - 04(/)] (3) 

where if 

j,(r) -- 5,(/)cos[cuf - flf(r)] 

«,(0 = ,V,(/)cos[w/ - 0,(0] (3a) 

where i = 1,2 then 

SiA
2 = i[S,: + S2

2 ± 2S,S2cos(0, - tf,)] 

., S, sin ft, + S, sin 0, 
tan 03 4 = —! —— - 

S, cos fl, ± S2 cos 02 

NiA
2 = i[N,2 + N2

Z ± 2A'|(V2cos(0, - 02)] 

iV, sir; <j>t ± N2 sin <j)2 

What is meant by "zom! low-pass filter" is that the filter 
output v is equal to the multiplier output z, less the terms 
of frequency 2<o. Thus if we define the sum and difference 
terms 

Zl(0 4 s3(t) + »,(/) = i[Ml(0 + «2(0] 

= Z,(0 cos [w/ - 0,(0] 

= zlc(f) cos wt + z,,(/) sin wt (4a) 

Z2(f) A 54(0 + n4(r) = i[«,(f) - H2(/)] 

= Z2(f) cos [«/ - 02(O] 

= z2c(/) cos wt + z2i(t) sin cof (4b) 

(5) 

we find that 

y(t) = \[Z2{t) - Z2
2(/)] 

where 

2i,22 = i[5,2 + S2
2 + N2 + N2

2 ± 2S,S2cos(02 - 0.) 

+ 2S,JV, cos (0, - 0,) ± 25,^ cos (02 - 0,) 

± 2^^, cos (0, - 02) + 2S2N2 cos (02 - 02) 

± 2NtN2cos(<j>,  - 02)] 

= 53.4
2 + ^3,4

2 + 2S3,4A3,4 cos (03,4 - 03,4) 

(5a) 
and 

ian0, 2 = 
S, sin 0, + S2 sin 02 + N, sin 0, ± N2 sin 02 

S, cos0, ± S2cos02 + .V, cos0, + A\ cos02 

S34 sin ö3 4 + NiA Jn 03 4 

^3.4COS034 + N3A cos t63,4 

(5b) 

Our object is to find the pdf of the filter output y(t) at a 
given instant in time. (From this point on, reference to 
time will be suppressed.) 

Distribution of the Sum and Difference Terms 

If, to use vector notation, we refer to the input noise 
components as x' = (nic,nis,n2c,n2s), v^here the prime (') 
is used to indicate the transpose, then we may express the 
joint pdf of the input noise components as 

PoM = — 
1 

2 / 
exp [-\x'Kx  '*] 

tan 03,4 = 
N, cos 0, ± N2 cos <t>2 

(3b) 

47t2\'det K, 

where A'^, the covariance matrix, is postulated to be 

A', = cov [nu(t),nis(t\n2c(t),n2s(t)'] 

= E[x'x] 

With this narrow-band representation, we have for the 
output of the multiplier 

z - (53 + n3)
2 - (s4 + n4)2 

= 2[5:
2 + 253yV., cos (03 - flj) + A'.,: - .S4

2 

- 254^4 cos (04 - 04) - A'42] 

4- (terms with frequency 2«). (4) 

15 

•V 0 />tr,o-2 W,(T2" 

0 <V -rtr,ff2 p<T,,(T2 

f,a\Oi — r(T,(T2 "22 0 
ro,ff. /)0-,tr2 0 <T," 

That is, the noise correlation at the inputs to the multiplier 
is considered to be such »hat, for the same time instant 

E(nlcn2c) = E(nisnu) = tmio2 

E('!u.n2i) =  -E(nunZc) = roxa2. 
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We may consider the sum and difference noise com- 
ponents ri = (n}c,n}i,nAl.,nis) as a linear transformation 
n = Ax, where the matrix A is given by 

A = 

i       0       \ 0 
0       i       0 i 
i      0   -i 0 
0*0 —i 

We may then write the pdf of the variables n as 

pi{n) = TTk exP [-"i^K."1*] 47rD 
(6) 

where the new covariance matrix Kn is easily computed to be 

Kn = AK.A 

0 Ä<73<T4 /c'ff3T4 

-/?'ff3<T4      /?<73C74 

Ä<X3<T4 -/«'(T3<T4 

— /J'ff3<74 ÄCT3(T4 

0 
0 

(7) 

Z> = v'det Ä, = <r3 V[l - *2 - (AT2].      (7a) 

The variances CT3
2
 and <r4

2, and R are as given in (2), and 
/j'(T3tT4 = -\raia1. 

It follows then that the quadrature expansions of the 
signal plus noise variables z, and z2 as just defined have the 
density function 

The quadratic form appearing in the integral's exponent 
reduces to 

Q = 15 c<7*"(z'2 + Sj2) + ff,2(Z'2 + s*2) 

- 2<73a4A"S3S4 cos (04 - 03 - x) 

- 2<T3ff4XZ,Z2 cos (0i -</>,- x) 

- 2aAVZx cos ($, - i) - 2ff3H-'Z2 cos (02 - w)] 

(12) 

where 

A'2 = R2 + (/c')2       tan x = Ä'/Ä 

V'2 = <r4
253

2 + ff3
2A-2S4

2 

- 2ff3(T4A'S354 cos (03 - 04 + x) 

W2 = (T3
2
S4

2
 + CT4

2
A-

2
S3

2 

- 2cr3(74A'S3S4 cos (03 - 04 + x) 

<r4S, sin 0, — ff3A'S4 sin (04 — x) 
cAS} cos 03 - <T3XS4 cos (04 - x) 

a,S, sin 04 — <T4XS, sin (0, + x) 
tan »v = —2-= 2 • ■! 1 . 

(T,S4 cos 04 - ff4A"S3 cos (0, + x) 

Using the relationship 

tan v = 

(13) 

Pl(-U- 2») = TTZ exP [-K« - »)'«„" '(I - a)] 
47T'D 

£   c„/„(x) COS IIW, 
(1. B  = 0 
|2,       11 > 0 

(8) 
where 

(Z - s)' ~ (zic - S3 cos 03, zu - S3 sin 03, 

III. GENERAL EXPRESSION OF THE: PROBABILITY DENSITY 

FUNCTION EOR THE CORRELATOR OUTPUT 

Recall that the filter output is y = 2(Z,2 - Z,:). The 
density function of Z, and Z2 is 

/>4(Z,.Z:) =  I     </</>, I     d61pi{Zi4t,Zl4i) 
Jo »0 

= Z,Z:        rf</>,        (/^2p2(Z| cos$,, Z, sin.<j>,, 

Z, cos 0,. Z, sin </>,) (10a) 

4,-rD J0 J(, 

•expf-:(Z - s) K„  '{Z - .v)] (HUM 

where 

(Z - 5)' 

= (Z, cos </>, - S3 cos 0,. Z, sin 0, - .V, sin 0,, 

Zi cos r/)2 - .S4 cos 04, Z2 sin (j)2 - St sin 04). 

(ID 

16 

and performing the integration with respect to <£, and (j)2, 
in a manner quite similar to Middleton [14, ch. 9] we 
obtain 

Viax.ii) = ^^P \jß LVzi2 + <vz2
2 + t,2]j 

AmMl D ;-l D I 

•/m r-T—)cos m(r - vv - x)    (14) 

where we have used 

1* = "-4
253

2 + ff;,2.V4
2 - 2ff3ff4A'53S4 cos (04 - 0j - A), 

(15) 

and /„,(■) is the mlh ordc modified Bessel function of the 
first kind. 

To obtain the density for v. we use the transformations 

Z,  = \ 2r cosh ;/. 

Z- = \ 2.1' sinh 11, for Z, > Z,, or v > 0 and » > 0 

and 

Z, = \ -2.1' sinh u, 

Z2 = \ —2.1' cosh 1/,     for Z, < Z2, or r < 0 and u > 0. 

(16) 
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Then we find that the density for > is given by the expression 

Pf,(y) =      dups(y,u) 
Jo 

I fx r~ l— du Pi(v 2y cosh u, \'2y sinh u),      y > 0 

du/»4(v/-2>sinh u, V-2jcosh u),   y < 0 

^exph^-Ob'l-^l 
PL 2D J 

X /*x 

m = 0 JQ 

and </, and rearranging terms for clarity, we have finally 

PA?) = -^~—, exp Izl \2a0
2\y\ + U2   - ~^~-] \ ai   + <V        12D L er3   +<T4J/ 

x     .     «,   ,y  -     /gg3g4y      |» 

„4-0 „4-0 Ä   rtt,   \2D2(<x3
2 + <x4

2)' 

. /ÜV / g^^: V /    D V 
\2D2J  W3

2 + <74
2)'  W + ff4V 

nh2we-flC0Sh2u em cos m(v — w ~ x) 
(k + r)\ 

n\(n 4- m)\k\ [k + m)l 

with 

Im(b cosh u)/m(c sinh u)Im(d sinh 2u) (17) 

a = iTlfa* + <^42)/2/>      d = <T3<74J|j|/Z) 

A + n + m\    f+B+. /       Z£l_ ) 
V       r       / \2D((7,2 + a,-)} 

(21) 
with 

and 

(b,c) = (aAVy/2ylD, oJVyJlylD), y > 0 
(f.9,<T0

2) = 
(<T4K,<73W,a4

2),       j > C 
(<73J*>4F,r;3

2),       y < 0. (22) 

= (<J3 »V - 2y/D, at FV - 2j/D),       y < 0. 

(18) 

By writing .v = 1 + cosh 2u, we may change the integral to 

V      ixe-"/m[Wi(x + 2)-}lm[cyfc}Im[dy/x(x + 2)] 
2      J0 

= ie.y    y  (b/2y/2)2" + '"    (^)2t+m 

2     n = o * = on!(n + m)!k\ (k + m)\ 

■ f"dxe-"(x + 2)n+k+mx*+(1/;2,m/m[cVix] 

2     n=o * = o   r=o   /i! (« 4- m)! A:! (/c + m)! 

/n + k + m\ 2„+t+m_r 

• [* dxe-axxk + <vl)m + 'lm[cyJTxl (19) 

Making use of Gradshteyn  and  Ryzhik  [15,  formula 
6.643.4], we obtain the following expression for (19): 

\2a)   Ya CXP V  + 8Ä/ 
2n + m/ J .i\2k + m (i&)2n+"W oo        cc     n + k+m 

1   1    Y   ■ 
n% *=0   rt'0  n! (n + »)!. fc! (k + m)! 

A recent paper by Andrews [5] gives an expression for 
the density function in nearly the same situation by means 
of the characteristic function method. Comparing the 
development here with that of Andrews, it appears that 
following the strenuous development associated with the 
computations of the characteristic function, one still needs 
to solve a convolution integral such as our (19). The different 
final expression he obtains results simply from a different 
method of attacking this type of integral. For the special 
cases, of course, the form of the expressions given here is 
identical to that of Andrews. Moreover, the computed 
results we show, match his wherever applicable. 

IV. REDUCTION OF THE GENERAL EXPRESSION TO SPECIAL 

CASES 

For practical applications and for purposes of checking 
our results with those of previous authors, it is instructive 
to reduce the general expression of (21) under certain 
assumptions. 

A. Equal Noise Power with Even Spectrum 

An important case is that for vvhich the noise inputs are 
of equal power and their spectra are even about the center 
frequency of the band. Under these assumptions, the cross- 
quadrature correlation coefficient r is zero [14] and ff,2 = 
a2 = a2, implying that R = R' ~ 0, so that the term X 
in (21) is zero. Defining the input SNR for channels 1 and 
2 by 

<J 2 
2    A   Al 

(20) 

where the L%+r{-) are the Laguerre polynomials of order 
k + r and parameter m. Substituting in (17) and for a, b, c, 

MMHÜ 

and 

17 
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Fig. 2. Probabilily density functions for cross-correlator output )it) 
for several values of identical input SNR's when p = 0, 0, = 92, 
and a1 = 1. 

the general expression of (21) is reduced to the fo'lowing 
form for v > 0: 

Pe(y) 
1 

exp 
I    ff2(l + p) \    2    J       I 

r=0 

'Mi - P)VI + P 
\<T    SI   + pf V8>V(T2 

and for y < 0 

(23a) 

'I 
r = 0 

L, 

'Ml + P)v 1 
V-8v/<r" 'M!^) 

(23b) 

where 

/',2 = 

V 

2(1 + p) 

1 

2(1 - p) 

(/i,2 + h2
2 + 2/i,/i2 cos 20)   (23c) 

(/T,
2
 + /J2

2
 - 2/t,/i2cos20)   (23d) 

and where 20 = 0{ — 02 is the difference in phase between 
the narrow-band signals at the multiplier input (see Fig. I 
and (3a)). Muraka [6] presents results corresponding to a 
further specialization of this case to 0 = 0 and h2 = /»2

2. 

B. No Input Signals and Equal Noise Power 

It tiie correlator inputs are assumed to be only the noise 
of equal power, that is, /i,2 = /i2

2 = 0 and cr,2 -- <r2
2 = 

<r2, the pdf (21) is further reduced to 

Pe(y) 

v > 0 

V < 0.    (24) 

This result is identical to that of Lezin [7], who began 
analysis with these assumptions. 

C. Computed Results for Special Cases 

Judging the equal pov er (a,2 = a2 = a2), even spectrum 
case to be of sufficient interest, we have plotted several 
curves for /», = h2 = h in order to show the effects of the 
parameters p, h2, and # = ((),— 02)/2; a, quite obviously, 
is a scaling parameter. In the Appendix the pdf (23) is 
shown to be equivalent to 

pb(y) = 1 exp [-(/.3
2 + /,4

2)] 

•I    I 
n = 0   m -0 

Bo - p)ih
2r m + p)iu

2r 

■{ 

exp 

exp 

-~>v 

<r2(l + p) 

2y 

G: 4v 

ff2d - P2 

<J
2
(\ - P) 

-m r      -Ay 
(1 - p') 

y > 0 

y < 0 

(25) 

where the polynomials we have defined,1 

G:(X)= £ (« + "-*)£ 

have the unusually useful computational property G"m = 
G^_, -I- G^_I. The form (25) results from application of 
tie characteristic function method to the special case we are 
now considering. 

For computation of (25), we have chosen a "nominal 
case" of specific values for the parameters: p = 0, a = 1, 
/; = 1, Ö = 0. In Fig. 2, the parameter h2 (SNR going into 
the multiplier) is varied, it is seen to have the powerful 
effect rl changing the pointed curve of the no-signal case 
into curves which begin to approach the familiar Gaussian. 

The correlation coefficient at the multiplier inputs p is 
varied in Fig. 3, where it is evident that increasing correla- 
tion produces a more "noiselike" distribution, that is, one 
with a smaller apparent SNR. Figs. 2 and 3 include curves 
which exactly match those given by Andrews [5], although 
the scaling is somewhat different due to his inclusion of a 
scale factor in the definition of the multiplier. 

The phase between the two multiplier signal inputs 0 is 
varied in Fig. 4. The iffect of this parameter is seen to shift 
the concentration of probable vulues closer to zero, decreas- 
ing the apparent SNR. Note that the cases 0 = TT/6 and 
0 = jt/3 are "reflections" of one another. 

V. REMARKS ON THE APPLICATIONS OF THE RESULTS 

The pdf for the output of a cross-correlator with bandpass 
inputs arises in many situations of practical interest. The 
equivalent pdf's (23) and (25) have been applied to the 

1 A further discussion on the proprrties of this polynomial Gü,(.v) 
is given in the Appendix. 
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Fig. 3. Probability density functions for cross-correlator output y(r) 
for several values of noise correlation coefficients when h2 = 1, 
a2 = l.and 0, ••= 02. 

Fig. 4. Probability density functions for cross-correlator output y(l) 
for several values of phase difference 0 — (0, - 02) 2 when /> = 0. 
hz = 1, and a2 = I. 

study of a class of multiplicative array configurations [8] 
often employed in sonar or underwater detection and 
estimation applications. In this application, the inputs to 
the multiplier arc summations of the outputs of array 
e;emenls. Having an explicit formulation for the pdf 
permitted direct calculation of the effects on the distribution 
of parameters such as signal bearing, the number of array 
elements, interelement correlation, array spacing, and 
input SNR. 

Calculation o\' receiver operating characteristics (ROO 
based on our results revealed that the multiplier/filter 
combination has the potential for performing signal detec- 
tion ver\ nearly as well as the more conventional square- 
law array configuration, whereas previous analysis based 
on SNR alone as a figure of merit predicted a 3 dB supe- 
riority for the conventional system. This particular applica- 
tion has been summarized in [22], 

For those who wish to pursue the mathematical aspect 
of this type of problem, consult [23]-[50], 

Application of the pdf for the correlator output in 
problems of digital communication is also rewarding. The 
correlator model we have considered corresponds to the 
receiver structure for binary communication in which 
the detection is accomplished with a noisy reference. The 
performance (error probability) computation, when the 
noises between the input and the reference channels are 
correlated, can be computed rising the pdf of (23) for 
/i,2 = //2

2 = /i2. Cooper [2] has shown that the applica- 
tion of the pdf for the correlator output to binary 
orthogonal communication systems produces the same 
known result of error probability under uncorrelated noise 
(p = 0) assumptions. 
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APPENDIX 

ANOTHER FORM FOR THE PROBABILITY DENSITY FUNCTION 

The case we are considering is that in which the cross-correla- 
tion coefficient r = 0 and a, — n2 (R -> 0), so that the term X 
in (21) equals zero. Under these conditions, the sum and dif- 
ference envelopes Z, and Z2 are statistically independent, since 
we may factor their joint probability density function (14) 

/>4(Z,,22) i exp    - Z,2 + S3 

<v 

■ exp 

H SjZ, 

a3
2 

"A 

I- 
2£i   2 

2    - 

Z2
2 + S4

; 

2<74
2 

2, 2/t, 

w s*z 
CT4 

4"t2 

2 

111 
"}2 r £2 

rr4
2       I oj 

2/;4
2 

where (Tj2 : 

(V + /»,2 

I/;,2 + /;,2 2h,h, 

• />), <V 
cos 20)2(1 

cos 2(/)/2(l 

- p). h\ = 
and   /i4

2 = 
y2(\;2,a2) 

(26) 

5,:;2rTj: = 
SjlW - 

is the non- 
centra! chi-square distribution with two degrees of freedom and 
noneentraility parameter a1. Thus the filter output y ■ J(Z,2 - 
/:~i is the difference between two scaled, independent non- 
central chi-square random variables. This type of relationship 
was noted also by Lee [16] 111 a similar application. 

The noncentral chi-square distribution has many forms and 
interpretations (see [I7| [20]). lor example, we ma\ write lhe 
following 

/-(.v;2.<r) exp i  ■ \(i2) V /'(.\: 2 -*  lr)     (27) 

where /2u;//i  is the (central) chi-square distribution with  n 
degrees of freedom 

rix\») 
1 ■Mr"" w (28) 
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A. Density for y Using Characteristic Function 

Using an expression given by Jayachandran and Barr [21 ], we 
may write the characteristic function of the distribution of y as 

»      »    ,u 2\w /A 2\« 

also. 

* = 0 \*/ k = 0        \/t/ 

Ut) = exp [-(/,3
2 + V)] Z   Z (-^(-V" 

m = o 11=0    m!       w! 

(/I + p\"+l f  (m+ n - k\ [i(l - p)]—* 
'  II   2   j      A>\        «        /(I - /VT3

2r)t+1 

/l - g\"+1 A   //w + /» - r\   [j(l + p)]"" | 

\     2     ) rt-o \ m /(l   +   /<74
2/)'+l 

Thus we obtain for the density of y 

/  v      2        r   „ 2      , 2,i v   v   [40 - P)h2T Pb(y) = -2exp [-(A3
2 + A4

2)] £   Z — '-L2-L 
ff m=0n=0 m! 

[id + p)k+Y 

- .s ;r-w 

Differentiation formula: 

I 

(29) 

— &m (x) = d-»<*>. 
ox- 

Addition formula: 

G£U + JO = Z H G«-*(;t)- k = 0 K! 

(34) 

(35) 

(36) 

■ < 

Jim (4^) —    r 
4y 

Relationships to Special Functions: The polynomials G^(.v) 
may be related to the confluent hypergeometric functions 

VbxJ;.*) and 2/ro(/'.<5; ; — 1/jr), to the Laguerre polynomials 
Z.m

v(A), and to the Whittaker functions W^M by the following 
formulas: 

ff2(l + p) 

"    1 

r = 0   \ 

2 + 2*   ,       y > 0 

m +"_ r\ /' + f\r 2 r "^ 

G£U) = — ¥( - m, - m - n; x) 

V"» 
H>(n + \,m + n + 2; x) 

Defining the polynomials 

j 

2d - P) 

2 + 2rj,       y < 0.   (30) 
S2M - m, n + 1;   ; - - J 

x) 

(37) 

(38) 

(39) 

1    xn a.„ .  ,       .. m + n   ,      m - n 
— ex  x Wba+ll2(x),     tor a = , b =   
m\ 2 2 

(40) 

(41) {~\)mL-m-"-\x). 

we finally obtain 

60»=iexp[-(,3
2./,4

2)]Z   il^flhll P6(.- -        , 
a n = 0 m = 0 ml 

[id + p)*4
2r 

■2v 
exp 

j exp 2>'      1 G™ f 
I <72<l   -   p)J I 

fT2(! + p) 

G: 

G2(\  ~   P2) 

4V 

a2(\ - p)\ \a2{\ - p2) 

y > 0 

y < 0. 

(31) 

By using the identity (40). our expression (31) for the pdf can 
be shown to be identical to that in [30, p. 63, eq. 28j. 

C. Equivalence of Forms 

We now show that the form we have just derived for the 
probability density function is equivalent to that of (23) under 
the assumed conditions 

T     '    amb" 
Z Z^-yjx) 

m=0 n = 0 m: n! 

rim 

= z z z 
m-0 n-0 k~0 

m + n - k\   xkamh" 

r, 

B.  The Polynomials G'Jx) 

We list here several of the properties of these polynomials. 

Definition: 

k:=0 \ n Ik: 

k\ m\ /;! 

k)l n\ 

= 0 1  0 (»1 + A)! A ! 

,(1 2 im 

F,(m f 1, 1; ft) 

Iterative relationships: 

.in        11 

G,"(-v) = — +   Z G;_,<V) = G,V,(A) +  ei  '(.v) 
m:      r ■ n 

(32) 

(33) 

= z 1 z r+") ^ 
- Z Z 

- z r~) 

= ''" I   l-V'   "" U2x ^)/.m( - M. 
m    0   \ .V / 

using Kummer's transformation on the last step. 

ij2\ax) ,F\(m + 1, 1; />) 

(42) 
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ON THE BINARY DPSK COMMUNICATION SYSTCMS 
IN CORRELATED GAUSSIAN NOISE 

Jhong S. Let and Leonard E. Miller 

ABSTRACT 

Using the recently developed probability density function v/e 

obtain "directly" the error rate expressions for the binary differential 

phase-shift keyed (DPSK) systems when the noise values at the sampling 

instants in adjacent time slots are statistically dependent. Tv/o cases 

are considered: One corresponding to equal SNR at each of the two sampling 

instants, and the other to unequal SNRs. The consideration of the former 

case, together with the assumption of unequal a priori symbol probabilities 

PQ and P, results in an error rate expression 

where p is the noise correlation coefficient, and h2 is the SNR. This 

expression shows clearly vvhy Pr is independent of noise correlation when the 

source symbols are equi-probable provider! intersymbol interference is assumed 

absent. We then obtain the error probability expression in terms of unequal 

SNRs (at the two sampling instants) and the correlation coefficient p. 

Since intersymbol interference in a binary DPSK system gi</es rise to uneoual 

SNRs, this expression provides a useful formula for estimating the system 

performance under such circumstances. 

This work was supported in part by the Office of Naval Research under 
Contract No. N00014-A-0377-0021. 
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I. INTRODUCTION 

The probability of error in binary differential phase-shift keyed 

(DPSK) systems has been analyzed by several authors [lJ-[6]. Different 

methodologies have been employed by the previous authors in obtaining 

the error rate expression. In a broad sense, the previous techniques 

may be classed into two categories:''indirect" analogy technique and 

"characteristic function" method. By "indirect analogy technique" we mean 

that the computation of error probability is based on the knowledge of 

other communication systems such as binary orthogonal systems. In such 

an approach the technique does not require the probability density function 

(pdf) of the decision variable because the probability of error expression, 

namely the probability distribution function, can*always be brouoht to a 

form that is equivalent to that of binary orthogonal system. Moreover, 

this technique has always been restricted to the case where the noise 

samples at adjacent time slots are assumed to be statistically independent. 

The characteristic function method [6], on the other hand, was employer to 

compute thi. error rate in a most general situation to account for the 

correlated noise and the intersymbol interference. 

Our purpose here is to obtain the probability of error expression 

in a "direct" fashion by using the pdf of the decision variable developed 

recently by the authors [7]. We obtain the error rate expressions of the 

two cases of interest. The first is that corresponding to equal SNR at 

each of the two sampling instants, and the other to unequal SNRs. The 

consideration of the former with the assumption of unequal source symbol 

*; _ 

24 

HB ■■ »-¥>—•■ 



probabilities will lead to an error probability expression which shows 

clearly how it is related to the correlation between two noises. 

It also shows why the error probability is independent of noise correlation 

when the symbol probabilities are equiprobable provided that the inter- 

symbol interference is assumed to be absent. 

Finally, we consider the case of unequal SNRs at the two sampling 

instants. Hubbard [8] has shown that the effects of intersymbol inter- 

ference is equivalent to consideration of different SNRs in the tv/o received 

pulses. Thus, the error rate expression we obtain in terms of two different 

SNRs, along with the noice correlation coefficient, would serve a useful 

formula for estimating the "worst" [8] case intersymbol interference perfor- 

mance. 

II. ANALYSIS 

In binary DPSK systems, the sequence of binary source symbols 

0 (space) and 1 (mark) differentially phase-modulate the carrier between, 

say, 0 and v  radians. One possible rule of differential phase coding is 

that whenever the source symbol is 0 the carrier phase remains unchanged 

from that for the previous symbol (or bit), and if the source symbol is "i, 

the carrier phase is shifted IT radians from that for the previous symbo'i. 

Thus, a change of ir radians occurs in carrier phase whenever the symbol 1 

is produced by the source. 

The receiver model for the binary DPSK system to be considered 

is shown in Figure 1, which is an ideal product demodulator. As shown in 

the figure, the two inputs to the multiplier, u,(t) and u,(t), represent 
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iiiiiwHiMrtrit '—LI"1J* man» inn n 



the received waveforms for two consecutive source symbols. Each input is 

assumed to contain bandpass information-carrying signals S^t) and bandpass 

Gaussian noises n..(t), i = 1,2: 

u,(t) = S^t) + n^t) (1) 

u2(t) = S2(t) + n2(t) (2) 

Let us assume that the "present" and the "preceding" source symbols are 

identified with carrier phases e-, and e2> respectively. Then we may write 

S-,(t) = A cos (üit-e^ (3) 

and 

S2(t) = A cos [u(t-T)-e2] (4) 

If we assume the carrier frequency to have been chosen such that 

cjT = 2rk, k integer, 

we have 

S2(t) = A cos (u)t-e2) (5) 

The noises are bandpass stationary Gaussian processes and hence we may 

represent them in the form of well-known Rice decompositions [9],[10]: 

n-i(t) = x,(t) cos ut + y-i(t) sin ut 

n2(t) = x,(t-T) cos [u(t-T)] + y^t-T) sin [w(t-T)] 

= x-j(t-T) cos ut + yn(t-T) sin ut 

= x2(t) cos ait + y9(t) sin A 

(6) 

(7) 

c 
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What Is noted in (6) and (7) is that the noise processes n^(t) and n2(t) 

are not "two different" processes but rather n2(t) is a translated version 

of the noise process n,(t). 

Our objective is to include in the analysis the influence of 

correlation between n,(t) and n2(t). Thus we have 

E[n1(t)n2(t)] = ECn^tJn^t-T)] = 02p(T) (8) 

and 

c* * E[n}(t)] • E[x?(t)] ■ E[y?(t)]; 1-1,2. (9) 

and p(T) is the normalized correlation coefficient of noises n,(t) and 

n2(t). 

The pdf of the Decision Variable 

The decision variable y(t) at time t is the ideally lov/pass 

filtered version of the product 

x(t) = u](t)xu2(t) = [S1(t)+n1(t)]x[S2(t)+n2(t)] 

= [A cos' («t-ejJ+n^tJMA cos (wt-e2)+n2(t)].    (10) 

We now need to know the pdf of y(t) at the zonal lowpass filter output 

(Figure 1). The problem of obtaining the pdf of the lowpass filter output 

for the system model that fits our situation was solved by Miller and Lee [7] 

in greater generality, including the case of correlated noises of unequal 

powers. Our need here is a special case of the problem treated in [7], and 

from (23) in [7] we have the pdf expressions as follows: 
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For y > 0 with noise correlation coefficient p: 

ptr.p)^«p[-;^-h|-(^)h|] 

r=0 

h,(l- 

~f'r^fK[-^S]<«.) 

and for y < 0 wi*h noise correlation coefficient p: 

P(y;p) ■ £ exp [^ - (1^) h| - hj] 

where 

h| * 2TnfpT thf+h2+?hlh2 cos (er82):i (12a) 

h| A 2TTpT Chf+h|-2h1h2 cos (ore2)] (12b) 

Ir( ) is the modified Bessel function of the first kind of 
order r 

L ( ) is the Laguerre polynomial of order r 

and     h? is the signal-to-noise ratio (SNR) in channel i, i=l,2. 

It is evident that the pdf given in (11) is that of a general 

form in that the two inputs to the multiplier (Figure 1) have different 

signal power levels and the noises are correlated. In another sense, how- 

ever, the pdf given in (11) is a "restricted" form in that the noise inputs 

are of equal power and their spectra are even about the center frequency of 

the band (symmetrical bandpass, see Section IV of [7]). With the above pdf 
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we will be able to obtain the error probabilities of binary DPSK system 

under two' different assumptions of practical interests. Namely, the error 

rates for equal and unequal input power level, respectively. 

It has been known [5], [6] that when the source symbols are equi- 

probable and the intersymbol interference is assumed absent, the error prob- 

ability of a binary DPSK system is independent of nois^- correlation. How- 

ever, when the prior probabilities of the source sysmbols are unequal» the 

error probability is found to depend very much on the noise correlation. The 

absence of intersymbol interference corresponds to a situation where the 

two input powers to the multiplier a>-e equal. It may be of interest to know, 

then, in what manner the error probability is affected by the noise correlation. 

In fact, in &  laboratory simulation for DPSK system, the binary symbols 

are not always generated in an equi-probable fashion, and the simulation 

results are not always "poorer" than the theoretical prediction of the 

ideal situation. As will be noted subsequently, the simulation results 

that are "better" than the ideal theoretical prediction.^:* e readily 

reconcilable in view of the error rate expressions to be derived in the 

following section. 

Also of interest is the error probability expression for the 

binary DPSK system for unequal input rower levels. A practical situation 

which corresponds to this assumption is that of intersymbol interference, 

since the attribute of intersymbol interference is the unequal pulse levels 

fur the two successive symbols. It will be explicit in the expression to 

be derived later that in sweh case the error performance depends upon the 

noise correlation regardless of the distribution of the source symbols. 
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III. THE PROBABILITY OF ERROR WHEN THE SUCCESSIVE PULSES HAVE EQUAL POWER 

The pdf that Is applicable to the particular situation where the 

two Input channels to   the multiplier (Figure 1} have equal SNRs is obtained 

when we substitute into (11) the conditions 

h^ = h| = h2 = A2/2a2. 

We then obtain: 

(13) 

£exp i 
8Te2, 

o^FpT - W cos2<^) -h2 sin2(-V^)J 
81"82, 

x   I 
r=0 

(ere2) 
h(l-p) cos —2 

JSffi2 

4h cos 
(e^eg) 

Hp ^ 

p(y;p) = 
[■ x Lr |-h2sin2 (!^i)(^fi.) ; y > o (14a) 

oTexp J 2y. rra" h2   C0S2(-V^) 
9re2x     2h2 

1-P 

X   *n r=0 

Wr 
h(l+p) sin (-ij-t) 

/3y7o^ 

,,in2(!l^i)j 

4h sin (-y-^) 
# 

E- 
9,-9. 

x Lr |_„. cos2 (XÜ)(^)]   ; y < 0 
(14b) 

In binary DPSK system, the binary decision is based on the compari 

son of the decision variable with "zero" threshold. The reason is that 

when noises are assumed to be absent at the input, the decision variable 

is given by 

y(t) - ^cos (e1-e2) (15) 

Since Oj-e« is either 0 or ±ir in DPSK system, only the sign of y(t) is 

significant in making a binary decision. 

x- 
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Let us assume that the reference (previous) phase o2 is 0. 

Then 8, 1s either 0 or w radians, depending upon whether the "next" symbol 

(present symbol) is 0 (space) or 1 (mark), so that 9i-92 = 0 or 8i-62 
=ir- 

If 8pis IT instea  then 8i-62 = 0 or 8,-62 
= ""*  a9a™ depending on whether 

"zero" or "one" ir. transmitted,respectively. From (14b) it can be easily 

verified that 

p(yip|6]-e2 
su) = p(y;p|e1-e2 = -IT) 

Thus, the conditional pdfs are obtained as follows: 

p(y;p|space) = p(y;pje1-e2 = 0) 

p(y;p|mark) = p(y;p|e1-e2 = ») 

(16) 

(17a) 

(17b) 

The density functions of (17) with the normalization of u - y/02  are given 

by 

p(u;P|space) = 

exp(j^) exp(-h2)   ; u<0 

exp(, ^)exP(- fh£) 1   fkbd 
{ 1+p     ] rp r=0 L M 

Ir(^ rf);u<0 

(18a) 

and 

p(u;p|mark) = 

exp,^- %>l    ^Jlr,«^,u <0 
r=0 

2u 
exp(- ^j~-)exp(-h?)   ; u>0 

(18b) 
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ü From (18a) and (18b) we observe the "symmetry" properties to be 

p(u;p|space) = p(-u;-p|mark) (19) 

The conditional pdf (19) is plotted under various parameter conditions in 

Figures 2-3. In Figure 2 the variations of the conditional pdf for different 

correlation coefficients are shown for fixed identical input SNRs of the two 

multiplier inputs. Note the dramatic influences of the correlation coeffici- 

ents for each input SNR. In Figure 3 we have shown the variations of the pdf 

for different SNRs for fixed noise correlation coefficients. 

To compute the probability of error we first obtain the conditional 

error probabilities: 

and 

P(e|space) = Prob{y<0|e1-e2 = 0} 

P(elmark) = prOb
{y>0lel~e2 = ±1l} 

(20) 

(21) 

To compute (20), we need only obtain from (14) 

p(yip|o1-e2 = 0, y<0) = p"(y;p|e1-e2 = 0) 

which can be shown to be 

p-(y;p|ere2 - 0)■ - J, exp [^- - a.*^) « h*({*)] 

• c 77 exp [- 
2y -h2] (22) 

In a similar manner, to compute (21) we need to obtain from (14) 

P+(y;p]ore2 . w) - £ exp [- ^^ - 2h2 (^) ♦ h2 0] 

(23) £ exp C" ^pT   "h2] 
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Using (22) and (23), we compute the conditional probabilities of error, 

and we get 

P(e|space) = J p"(y;pJ8re2 - 0) dy - ^ e"h2 (24) 

and 

P(ejmark) =f p
+(y;p|ere2 = «) dy * 3*2. e"

h2       (25) 

Assuming that the a priori probabilities of source symbol 0 (space) and 

1 (mark) to be PQ and P^, respectively, we obtain the unconditional proba- 

bility of error to be 

PE = P0P(ejspace) + P^Cejmark) 

• {r P ♦ (PrP0)P] e-
h2 

(26) 

When the source rymbol probabilities are equiprobable, namely when PQ = P,, 

(26) reduces to the well known classical expression P£ = i exp(-h
2) for the 

binary DPSK error rate, where h2 is the input carrier-to-noise power ratio 

(SNR). 

From the above expressions, we observe the known fact [5],[6] 

that the error probability is independent of noise correlation when the 

source symbols are equi-probable. It is interesting to note the simplistic 

manner in which these variables affect the ideal classical error rate 

expression. 

IV.     THE PROBABILITY OF ERROR WHEN THE SUCCESSIVE PULSES HAVF 
UNEQUAL POWER   

Our purpose here is to compute the probability of error in the 

binary DPSK system when the two multiplier inputs have different SNRs. As 
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alluded to in the earlier discussions, this case corresponds to that of 

Intersymbol interference. Our aim is to show that, under such conditions, 

the error rate expression is not independent of the noise correlation p(T) 

even if the binary source symbols are assumed to be equi-probable. 

t 

Here we make use of the general form of the pdf given in (11). 

The method of analysis parallels that considered in Section III. 

Let us assume that the reference phase .•?- is 0 and the transmitted 

source symbol is 1 (mark). Then e,-e2 = *. The conditional probability of 

error is thus computed from 

Pfejp.hphglmark) = J    p+(y;p,h1 th2|8j-e2 = ir)dy     (27) 

where the pdf in the integrand is given by (11a) with e^-e« = *.   The inte- 

gration indicated by (27) then results in 

P(e;p,h1$h2|mark) i   r <hi jjr exP 1^- — 
+h2)2        (hrh2)2 

4 2(l+p) ] 

r=0 

#     (hlh2} 

/$/? [*i{7^}(hl*h2,2J  Fr^'hrh2)     <28> 

where 

,(p;h1,h2) ^ [VaVr/2ir(2e,y)dy (29a) 

and where 

o2(l+p) 

fl A hTh2 
ß"oTüpT 

(29b) 

(29c) 
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Using the formulas 9.220.2 and 6.643.2 1n [11], one can show that (29a) 

reduces to 

Fr(p;hrh2) = ^ ßr a"1 ^(l.r+l-.^a) (30) 

where ,F,( ) is the confluent hypergeometric function. 

Ml Putting (29b)-(30) into (28) we obtain 

1+n       F  <hl+M2     <nrM2l 
P(ejp,hrh2|iark) =    If exp !- —^ 2TI+PVJ 

x jo Ä[l^Hhrh
2)2]riFi f-^TÖf] 

It can be shown that the other conditional probability of error is exactly 

the same as (31) except the sign change in p: 

P(e;p,hlsh2|space) = P(e;-P,h1,h2|mark) (32) 

When h,=h2 is imposed on (31) and (32), the results reduce to the expression 

we have already obtained in Section III [see (24) and (25)].    That is, 

when h? = h| = h2 

and 

P(e;P,h1,h2|mark) = ^-e"h2 (33a) 

P(e;P,h1,h2|space) = ±f e"h2 (33b) 

-/3- 
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The probability of error for the case of unequal input SNRs for 

equl-probable binary DPSK systam is then given by 

PE " 1 Cp(eJP>hi »h2!mark> + P^p.hph^space)] 

i 

* 2 CPte'.P.hphglmark) + P(e;-p»h1,h2Jmark)] (34) 

i i 

where it is noted that the conditional error probability (31) is all that 

1s needed to compute (34). 
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Figure 2a: pdf of the normalized (u=y/o2) decision variable 
(cross-correlator output) with noise correlation 
coefficients as parameters when h2 = SNR = 0.5. 
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Figure 2b: pdf of the normalized (u=y/o2) decision variable 
(cross-correlator output) with noise correction 
coefficients as parameters when h2 = SNR = 2. 
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Figure 2c: pdf of the normalized (u=y/0
2) decision variable 

(cross-correlator output) with noise correlation 
coefficients as parameters when h2 = SNR = 4. 

41 



11, • 
i 

■ 

i     I  i 

V 1 

Figure 3a: 
Pdf of the noraalized (u-y/oa) decision variable 
(cross-correlator output) with h2 = SNR as 
parameters for p = 0 (a "classical" case) 
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Figure 3b: pdf of the normalized (u=y/a2) decision, variable 
(cross-correlator output) with h2 = SNR as 
parameters for p = -0.4. 
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Figure 3c:   pdf of the normalized (u=y/o2) decision variable 
(cross-correlator output) with h2 H SNR as 
parameters for p = 0.4. 
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